Skip to main content
Log in

Excitons in artificial quantum dots in the weak spatial confinement regime

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30–270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Ivchenko and G. E. Picus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, 2nd ed. (Springer, New York, 1997).

    MATH  Google Scholar 

  2. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, Boston, 1991).

    Google Scholar 

  3. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York, 1993).

    Google Scholar 

  4. L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Sci., Singapore, 1993).

    Google Scholar 

  5. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998) [Semiconductors 32, 343 (1998)].

    Google Scholar 

  6. Semiconductor Quantum Dots: Physics, Spectroscopy and Applications, Ed. by Y. Masumoto and T. Takagahara (Springer, Berlin, 2002).

    Google Scholar 

  7. A. S. Kaminskiĭ and Ya. E. Pokrovskiĭ, Zh. Éksp. Teor. Fiz. 76, 1727 (1979) [Sov. Phys. JETP 49, 878 (1979)]; V. D. Kulakovskiĭ, G. E. Pikus, and V. B. Timofeev, Usp. Fiz. Nauk 135, 237 (1981) [Sov. Phys. Usp. 24, 815 (1981)].

    Google Scholar 

  8. P. Hawrylak, Phys. Rev. B 60, 5597 (1999).

    Article  ADS  Google Scholar 

  9. A. Barenco and M. A. Dupertuis, Phys. Rev. B 52, 2766 (1995).

    Article  ADS  Google Scholar 

  10. A. Wojs and P. Hawrylak, Phys. Rev. B 55, 13066 (1997).

  11. U. Banin, Y. Cao, D. Katz, and O. Mills, Nature 400, 542 (1999).

    Article  ADS  Google Scholar 

  12. M. Bayer, O. Stern, P. Hawrylak, et al., Nature 405, 923 (2000).

    Article  ADS  Google Scholar 

  13. M. Bayer, T. Gutbrod, A. Forchel, et al., Phys. Rev. B 58, 4740 (1998).

    Article  ADS  Google Scholar 

  14. R. Steffen, A. Forchel, T. L. Reinecke, et al., Phys. Rev. B 54, 1510 (1996).

    Article  ADS  Google Scholar 

  15. J. Cibert, P. M. Petroff, G. J. Dolan, et al., Appl. Phys. Lett. 49, 1275 (1986).

    Article  ADS  Google Scholar 

  16. K. Brunner, U. Bockelmann, G. Abstreiter, et al., Phys. Rev. Lett. 69, 3216 (1992).

    Article  ADS  Google Scholar 

  17. G. Bacher, T. Kümmell, D. Eisert, et al., Appl. Phys. Lett. 75, 956 (1999).

    Article  ADS  Google Scholar 

  18. U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990).

    Article  ADS  Google Scholar 

  19. S. Zaitsev, M. K. Welsch, H. Schömig, et al., Semicond. Sci. Technol. 16, 631 (2001).

    ADS  Google Scholar 

  20. M. K. Welsch, H. Schömig, M. Legge, et al., Appl. Phys. Lett. 78, 2937 (2001).

    Article  ADS  Google Scholar 

  21. D. Gammon, E. S. Snow, B. V. Shanabrook, et al., Phys. Rev. Lett. 76, 3005 (1996).

    Article  ADS  Google Scholar 

  22. M. Grundmann, J. Christen, N. N. Ledentsov, et al., Phys. Rev. Lett. 74, 4043 (1995).

    Article  ADS  Google Scholar 

  23. C. Obermüller, A. Deisenrieder, G. Abstreiter, et al., Appl. Phys. Lett. 74, 3200 (1999).

    Article  ADS  Google Scholar 

  24. A. Zrenner, L. V. Butov, M. Hagn, et al., Phys. Rev. Lett. 72, 3382 (1994).

    Article  ADS  Google Scholar 

  25. J. Seufert, R. Weigand, G. Bacher, et al., Appl. Phys. Lett. 76, 1872 (2000).

    Article  ADS  Google Scholar 

  26. P. G. Blome, M. Wenderoth, M. Hübner, et al., Phys. Rev. B 61, 8382 (2000).

    Article  ADS  Google Scholar 

  27. L. Besombes, K. Kheng, L. Marsal, et al., Phys. Rev. B 65, R121314 (2002).

  28. W. Que, Phys. Rev. B 45, 11036 (1992).

    Google Scholar 

  29. V. Halonen, T. Chackraborty, and P. Pietiläinen, Phys. Rev. B 45, 5980 (1992).

    Article  ADS  Google Scholar 

  30. S. V. Nair, S. Sinha, and K. C. Rustagi, Phys. Rev. B 35, 4098 (1987).

    Article  ADS  Google Scholar 

  31. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988).

    Article  ADS  Google Scholar 

  32. D. R. Yakovlev and K. V. Kavokin, Comm. Cond. Matter Phys. 18, 51 (1996).

    Google Scholar 

  33. B. Kuhn-Heinrich, W. Ossau, T. Litz, et al., J. Appl. Phys. 75, 8046 (1994).

    Article  ADS  Google Scholar 

  34. A. A. Sirenko, T. Ruf, M. Cardona, et al., Phys. Rev. B 56, 2114 (1997).

    Article  ADS  Google Scholar 

  35. M. Korkusinski and P. Hawrylak, Phys. Rev. B 63, 195311 (2001).

    Google Scholar 

  36. M. K. Welsch, H. Schömig, M. Legge, et al., Appl. Phys. Lett. 78, 2937 (2001).

    Article  ADS  Google Scholar 

  37. A. Wojs, P. Hawrylak, S. Fafard, et al., Phys. Rev. B 54, 5604 (1996).

    Article  ADS  Google Scholar 

  38. H. J. Krenner, M. Sabathil, E. C. Clark, et al., Phys. Rev. Lett. 94, 057402 (2005).

    Google Scholar 

  39. V. Fock, Z. Phys. 47, 446 (1928).

    Article  ADS  Google Scholar 

  40. U. Bockelmann, Phys. Rev. B 50, 17271 (1994).

    Google Scholar 

  41. M. K. Welsch, PhD Thesis (Univ. Würzburg, Germany, 2005).

  42. A. El Moussaouy, D. Bria, A. Nougauoi, et al., J. Appl. Phys. 93, 2906 (2003).

    Article  ADS  Google Scholar 

  43. A. Kutler, M. Bayer, A. Forchel, et al., Phys. Rev. B 58, R4740 (1998).

  44. G. Bacher, H. Schömig, J. Seufert, et al., Phys. Status Solidi B 229, 415 (2002).

    Article  Google Scholar 

  45. M. Bayer, V. B. Timofeev, T. Gutbrod, et al., Phys. Rev. B 52, R11623 (1995).

  46. R. Kotlyar, T. L. Reinecke, M. Bayer, et al., Phys. Rev. B 63, 85310 (2001).

  47. S. J. Prado, C. Trallero-Giner, A. M. Alcalde, et al., Phys. Rev. B 69, 201310 (2004).

    Google Scholar 

  48. T. Nakaoka, T. Saito, J. Tatebayashi, et al., Phys. Rev. B 70, 235337 (2004).

  49. S. N. Walck and T. L. Reinecke, Phys. Rev. B 57, 9088 (1998).

    Article  ADS  Google Scholar 

  50. M. Bayer, S. N. Walck, T. L. Reinecke, et al., Phys. Rev. B 57, 6584 (1998).

    Article  ADS  Google Scholar 

  51. R. Rinaldi, P. V. Giugno, R. Cingolani, et al., Phys. Rev. Lett. 77, 342 (1996).

    Article  ADS  Google Scholar 

  52. M. Bayer, A. Schmidt, A. Forchel, et al., Phys. Rev. Lett. 74, 3439 (1995).

    Article  ADS  Google Scholar 

  53. Yu. G. Kusrayev, A. V. Koudinov, I. G. Aksyanov, et al., Phys. Rev. Lett. 82, 3176 (1999).

    Article  ADS  Google Scholar 

  54. C. Gourdon and P. Lavallard, Phys. Rev. B 46, 4644 (1992).

    Article  ADS  Google Scholar 

  55. A. V. Koudinov, I. A. Akimov, Yu. G. Kusrayev, et al., Phys. Rev. B 70, 241305 (2004).

    Google Scholar 

  56. M. Bayer, A. Kuther, A. Forchel, et al., Phys. Rev. Lett. 82, 1748 (1999).

    Article  ADS  Google Scholar 

  57. U. Bockelmann, Phys. Rev. B 48, 17637 (1993).

    Google Scholar 

  58. K. Mukai, N. Ohtsuka, H. Shoji, et al., Phys. Rev. B 54, R5243 (1996).

  59. U. Bockelmann, Phys. Rev. B 55, 4456 (1997).

    Article  ADS  Google Scholar 

  60. R. Heitz, M. Veit, N. N. Ledentsov, et al., Phys. Rev. B 56, 10435 (1997).

  61. U. Bockelmann and T. Egeler, Phys. Rev. B 46, 15574 (1992).

    Google Scholar 

  62. T. Takagahara, Phys. Rev. B 47, 4569 (1993).

    Article  ADS  Google Scholar 

  63. A. Wojs, P. Hawrylak, S. Fafard, et al., Phys. Rev. B 54, 5604 (1996).

    Article  ADS  Google Scholar 

  64. R. P. Leavitt and J. W. Little, Phys. Rev. B 42, 11774 (1990).

    Google Scholar 

  65. G. Bacher, R. Weigand, J. Seufert, et al., Phys. Rev. Lett. 83, 4417 (1999).

    Article  ADS  Google Scholar 

  66. A. Kuther, M. Bayer, A. Forchel, et al., Phys. Rev. B 58, R7508 (1997).

  67. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Google Scholar 

  68. V. D. Kulakovskii, G. Bacher, R. Weigand, et al., Phys. Rev. Lett. 82, 1780 (1999).

    Article  ADS  Google Scholar 

  69. P. S. Dorozhkin, A. S. Brichkin, V. D. Kulakovskii, et al., Phys. Status Solidi A 202, 2609 (2005).

    Article  ADS  Google Scholar 

  70. H. Mino, S. Takeyama, S. Adachi, et al., Physica B (Amsterdam) 298, 421 (2001).

    ADS  Google Scholar 

  71. I.-K. Oh and Jai Singh, Phys. Rev. B 60, 2528 (1999).

    Article  ADS  Google Scholar 

  72. D. S. Citrin, Phys. Rev. B 50, 17655 (1994).

    Google Scholar 

  73. Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys. Rev. B 42, 1713 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zaitsev.

Additional information

Original Russian Text © S.V. Zaitsev, M.K. Welsch, A. Forchel, G. Bacher, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 6, pp. 1415–1434.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, S.V., Welsch, M.K., Forchel, A. et al. Excitons in artificial quantum dots in the weak spatial confinement regime. J. Exp. Theor. Phys. 105, 1241–1258 (2007). https://doi.org/10.1134/S1063776107120163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107120163

PACS numbers

Navigation