Skip to main content
Log in

Kinetics of the spin-2 Blume-Capel model under a time-dependent oscillating external field

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Within a mean-field approach and using the Glauber-type stochastic dynamics, we study the kinetics of the spin-2 Blume-Capel model in the presence of a time-varying (sinusoidal) magnetic field. We investigate the time dependence of the average order parameter and the behavior of the average order parameter in a period, which is also called the dynamic order parameter, as a function of the reduced temperature. The nature (continuous and discontinuous) of the transition is characterized by the dynamic order parameter. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one dynamic tricritical point; besides a disordered and an ordered phases, there are three phase coexistence regions that are strongly dependent on the interaction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Obokata and T. Oguchi, J. Phys. Soc. Jpn. 25, 322 (1968).

    Article  ADS  Google Scholar 

  2. D. K. Ray and J. Sivardiére, Phys. Rev. B 18, 1401 (1978).

    Article  ADS  Google Scholar 

  3. J. W. Tucker, J. Magn. Magn. Mater. 71, 27 (1987).

    Article  ADS  Google Scholar 

  4. A. Lipowski and M. Suzuki, Physica A (Amsterdam) 193, 360 (1993).

    MathSciNet  Google Scholar 

  5. M. Kolesik and L. Šamaj, Int. J. Mod. Phys. B 6, 1529 (1992).

    Article  ADS  Google Scholar 

  6. J. A. Plascak, J. G. Moreira, and F. C. Sá Berreto, Phys. Lett. A 173, 360 (1993).

    Article  ADS  Google Scholar 

  7. M. N. Tamashiro and S. R. A. Salinas, Physica A (Amsterdam) 211, 124 (1994).

    ADS  Google Scholar 

  8. M. Jurčišin, A. Bobák, and M. Jaščur, Physica A (Amsterdam) 224, 684 (1996).

    ADS  Google Scholar 

  9. T. Iwashita, R. Satou, T. Imada, and T. Idogaki, Physica B (Amsterdam) 284–288, 1203 (2000).

    Google Scholar 

  10. T. Kaneyoshi, M. Jaščur, and I. P. Fittipaldi, Phys. Rev. B 48, 250 (1993).

    Article  ADS  Google Scholar 

  11. A. Elkouraychi, M. Saber, and J. W. Tucker, Physica A (Amsterdam) 271, 576 (1995).

    ADS  Google Scholar 

  12. M. Saber and J. W. Tucker, Physica A (Amsterdam) 217, 407 (1995).

    ADS  Google Scholar 

  13. H. El Mir, M. Saber, and J. W. Tucker, J. Magn. Magn. Mater. 138, 76 (1994).

    Article  ADS  Google Scholar 

  14. W. Jiang, G.-Z. Wie, and Z.-H. Xin, Phys. Status Solidi B 225, 215 (2001).

    Article  ADS  Google Scholar 

  15. W. Jiang, G.-Z. Wie, D. An, and Z. Qi, Chin. Phys. 11, 832 (2002).

    Google Scholar 

  16. Y.-Q. Liang, G.-Z. Wei, Q. Zang, and G.-I. Song, Chin. Phys. Lett. 21, 378 (2002).

    ADS  Google Scholar 

  17. Y.-Q. Liang, G.-Z. Wei, L.-L. Song, and S.-L. Zang, Commun. Theor. Phys. 42, 623 (2004).

    Google Scholar 

  18. O. Canko, E. Albayrak, and M. Keskin, J. Magn. Magn. Mater. 294, 63 (2005).

    Article  ADS  Google Scholar 

  19. O. Canko and E. Albayrak, Phys. Lett. A 340, 18 (2005).

    Article  ADS  Google Scholar 

  20. M. A. Ahrens, A. Schadschneider, and J. Zittartz, Europhys. Lett. 59, 889 (2002).

    Article  ADS  Google Scholar 

  21. A. Erdinç, O. Canko, and E. Albayrak, Eur. Phys. J. B 52, 521 (2006).

    Article  ADS  Google Scholar 

  22. M. Dudzinski, G. Fath, and J. Sznajd, Phys. Rev. B 59, 13764 (1999).

    Google Scholar 

  23. G. Sun, Phys. Rev. B 51, 8370 (1995).

    Article  ADS  Google Scholar 

  24. H. Niggemann, A. Klümper, and J. Zittartz, Eur. Phys. J. B 13, 15 (2000).

    Article  ADS  Google Scholar 

  25. M. A. Ahrens, A. Schadschneider, and J. Zittartz, Phys. Rev. B 71, 174432 (2005).

    Google Scholar 

  26. R. J. Glauber, J. Math. Phys. 4, 294 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).

    Article  ADS  Google Scholar 

  28. G. M. Buendía and E. Machado, Phys. Rev. E 58, 1260 (1998).

    Article  ADS  Google Scholar 

  29. M. Keskin, O. Canko, and Ü. Temizer, Phys. Rev. E 72, 036125 (2005); M. Keskin, O. Canko, and E. Kantar, Int. J. Mod. Phys. C 17, 1239 (2006); O. Canko, Ü. Temizer, and M. Keskin, Int. J. Mod. Phys. C 17, 1717 (2006); M. Keskin, O. Canko, and Ü. Temizer, Zh. Éksp. Teor. Fiz. 131, 1073 (2007) [JETP 104, 936 (2007)]; M. Keskin, Ü. Temizer, O. Canko, and E. Kantar, Phase Transit. 80, 855 (2007).

  30. M. Keskin, O. Canko, and B. Deviren, Phys. Rev. E 74, 011110 (2006); O. Canko, B. Deviren, and M. Keskin, J. Phys.: Condens. Matter 18, 6635 (2006); M. Keskin, O. Canko, and B. Deviren, J. Magn. Magn. Mater. 313, L1 (2006); M. Keskin, O. Canko, and M. Kirak, J. Stat. Phys. 127, 359 (2007).

  31. M. Acharyya, Phys. Rev. E 56, 2407 (1997); A. Chatterjee and B. K. Chakrabarti, Phys. Rev. E 67, 046113 (2003).

    Article  ADS  Google Scholar 

  32. S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett. 81, 834 (1998); Phys. Rev. E 59, 2710 (1999); G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 63, 016120 (2001); G. Korniss, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 66, 056127 (2002).

    Article  ADS  Google Scholar 

  33. B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847 (1999); M. Acharyya, Int. J. Mod. Phys. C 16, 1631 (2005).

    Article  ADS  Google Scholar 

  34. M. F. Zimmer, Phys. Rev. E 47, 3950 (1993); M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550 (1995); M. Acharyya, Phys. Rev. E 58, 179 (1998).

    Article  ADS  Google Scholar 

  35. H. Fujisaka, H. Tutu, and P. A. Rikvold, Phys. Rev. E 63, 036109, 059903 (2001); H. Tutu and N. Fujiwara, J. Phys. Soc. Jpn. 73, 2680 (2004); E. Z. Meĭlikov, Pis’ma Zh. Éksp. Teor. Fiz. 79, 757 (2004) [JETP Lett. 79, 620 (2004)].

    Google Scholar 

  36. Q. Jiang, H. N. Yang, and G. C. Wang, Phys. Rev. B 52, 14911 (1995); W. Kleemann, T. Braun, J. Dec, and O. Petracic, Phase Transit. 78, 811 (2005); D. T. Robb, Y. H. Xu, O. Hellwing, et al., in Proceedings of Meeting of the American Physical Society (Baltimore, USA, 2006); D. T. Robb, Y. H. Xu, O. Hellwing, et al., submitted to Phys. Rev. B.

  37. Z. A. Samoilenko, V. D. Okunev, E. I. Pushenko, et al., Inorg. Mater. 39, 836 (2003).

    Article  Google Scholar 

  38. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  39. A. S. Mikhailov and G. Ertl, Science 272, 1596 (1996).

    Article  ADS  Google Scholar 

  40. Phase Transformations and Systems Driven Far from Equilibrium, Ed. by E. Ma, P. Bellon, M. Atzmon, and R. Tivedi (MRS, Pittsburgh, Pa, 1998), Mater. Res. Soc. Symp. Proc., Vol. 481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keskin.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keskin, M., Canko, O. & Ertaş, M. Kinetics of the spin-2 Blume-Capel model under a time-dependent oscillating external field. J. Exp. Theor. Phys. 105, 1190–1197 (2007). https://doi.org/10.1134/S1063776107120102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107120102

PACS numbers

Navigation