Skip to main content
Log in

Structural transformations in single-crystal iron during shock-wave compression and tension: Molecular dynamics simulation

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The molecular dynamics method is used to simulate shock-wave propagation in the [100] direction of a single-crystal bcc iron target in order to study structural transformations in compression and rarefaction waves and the mechanisms of spall fracture. The specific features of structural transformations near the lateral target surface have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 731 (2003) [JETP Lett. 77, 606 (2003)].

    Google Scholar 

  2. V. V. Zhakhovskii, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Phys. Rev. Lett. 83, 1175 (1999).

    Article  ADS  Google Scholar 

  3. A. B. Belonoshko, Science 275, 955 (1997).

    Article  Google Scholar 

  4. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Phys. Rev. B 72, 064120 (2005).

    Google Scholar 

  5. J. F. Belak, J. Comput.-Aided Mater. Des. 5, 193 (1998).

    Article  ADS  Google Scholar 

  6. R. E. Rudd and J. F. Belak, Comput. Mater. Sci. 24, 148 (2002).

    Article  Google Scholar 

  7. N. J. Wagner, B. L. Holian, and A. F. Voter, Phys. Rev. A 45, 8457 (1992).

    Article  ADS  Google Scholar 

  8. W. C. Morrey and L. T. Wille, Comput. Mater. Sci. 10, 432 (1998).

    Article  Google Scholar 

  9. A. M. Krivtsov, Fiz. Tverd. Tela (St. Petersburg) 46, 1025 (2004) [Phys. Solid State 46, 1055 (2004)].

    Google Scholar 

  10. G. É. Norman, V. V. Stegaĭlov, and A. V. Yanilkin, Dokl. Akad. Nauk 404, 757 (2005) [Dokl. Phys. 50, 509 (2005)].

    Google Scholar 

  11. G. É. Norman, V. V. Stegaĭlov, and A. V. Yanilkin, Teplofiz. Vys. Temp. 45, 193 (2007) [High Temp. 45, 164 (2007)].

    Google Scholar 

  12. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989).

    Google Scholar 

  13. A. A. Valuev, G. É. Norman, and V. Yu. Podlipchuk, in Mathematical Modeling. Physicochemical Properties of Matter, Ed. by A. A. Samarskiĭ and N. N. Kalitkin (Nauka, Moscow, 1989), p. 5 [in Russian].

    Google Scholar 

  14. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Impact-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  15. T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  16. D. Batani, V. I. Vovchenko, G. I. Kanel’, et al., Dokl. Akad. Nauk 389, 328 (2003) [Dokl. Phys. 48, 123 (2003)].

    MATH  Google Scholar 

  17. V. R. Regel’, A. I. Slutsker, and É. E. Tomashevskiĭ, Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  18. I. I. Novikov and V. A. Ermishkin, Physical Mechanics of Real Materials (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  19. B. L. Glushak, V. F. Kuropatenko, and S. A. Novikov, Study of Strength of Materials at Dinamic Loads (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  20. A. I. Funtikov, Teplofiz. Vys. Temp. 41, 954 (2003) [High Temp. 41, 850 (2003)].

    Google Scholar 

  21. K. J. Caspersen, A. Lew, M. Ortiz, and E. A. Carter, Phys. Rev. Lett. 93, 115501 (2004).

    Google Scholar 

  22. J. C. Boettger and D. C. Wallace, Phys. Rev. B 55, 2840 (1997).

    Article  ADS  Google Scholar 

  23. S. V. Razorenov, G. I. Kanel’, and V. E. Fortov, Pis’ma Zh. Éksp. Teor. Fiz. 80, 395 (2004) [JETP Lett. 80, 348 (2004)].

    Google Scholar 

  24. D. M. Clatterbuck, D. C. Chrzan, and J. W. Morris, Jr., Acta Mater. 51, 2271 (2003).

    Article  Google Scholar 

  25. M. S. Daw and M. I. Bases, Phys. Rev. B 29, 6443 (1984).

    Article  ADS  Google Scholar 

  26. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (Mosk. Inst. Stali Splavov, Moscow, 2005) [in Russian].

    Google Scholar 

  27. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., Philos. Mag. 83, 3977 (2003).

    Article  Google Scholar 

  28. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Google Scholar 

  29. J. Li, Model. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  ADS  MATH  Google Scholar 

  30. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  Google Scholar 

  31. J. M. Brown, J. N. Fritz, and R. S. Hixson, J. Appl. Phys. 88, 5496 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Stegaĭlov, A.V. Yanilkin, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 6, pp. 1064–1072.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegaĭlov, V.V., Yanilkin, A.V. Structural transformations in single-crystal iron during shock-wave compression and tension: Molecular dynamics simulation. J. Exp. Theor. Phys. 104, 928–935 (2007). https://doi.org/10.1134/S1063776107060106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107060106

PACS numbers

Navigation