Skip to main content
Log in

Atomistic structural transformation of iron single crystal under bi-axial stretching using classical molecular dynamics simulation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The exploration of mechanical properties and formation of various crystal structures under the mechanically stressed condition has numerous uses for the design of engineering components for electronic instruments, automotive, aerospace, etc. In order to diagnose the stress–strain behaviour and growth coalescence of crystalline structures in single-crystal iron during bi-axial tensile deformation, classical molecular dynamics (MD) simulation has been employed. Two-stage atomistic structural transformations in single-crystal iron are observed. First-stage transformation corresponds to body-centred cubic (bcc) to face-centred cubic (fcc) crystal, whereas the second-phase transformation corresponds to fcc to bcc. To gain further insights, multiple MD simulations have been performed by varying the strain rate of the tensile deformation. Common neighbour analysis, dislocation analysis and stress–strain analysis have been used to precisely characterize the simulation trajectories during simulations. Outcomes of our work will provide additional insights for improved design of engineering components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Martin P and Christopher Mark T 2000 Wear 241 193

    Article  Google Scholar 

  2. Henneberger G and Bork M 1997 IEE Colloquium on new topologies for permanent magnet machines (Digest No: 1997/090) 1 1

  3. Möhring H C, Brecher C, Abele E, Fleischer J and Bleicher F 2015 CIRP Ann. 64 725

    Article  Google Scholar 

  4. Czaderski C, Shahverdi M, Brönnimann R, Leinenbach C and Motavalli M 2014 Constr. Build. Mater. 56 94

    Article  Google Scholar 

  5. Han B Q, Mohamed F A and Lavernia E J 2003 Metall. Mater. Trans. A 34 71

    Article  Google Scholar 

  6. De Jong M and Rathenau G W 1959 Acta Metall. 7 246

    Article  Google Scholar 

  7. Stein D F and Low J R Jr 1966 Acta Metall. 14 1183

    Article  CAS  Google Scholar 

  8. Lan Y, Klaar H J and Dahl W 1992 Metall. Mater. Trans. A 23 537

    Article  Google Scholar 

  9. Jeon J B, Lee B J and Chang Y W 2011 Scr. Mater. 64 494

    Article  CAS  Google Scholar 

  10. Tang M and Marian J 2014 Acta Metall. 70 123

    CAS  Google Scholar 

  11. Matsui H, Kimura H and Moriya S 1979 Mater. Sci. Eng. 40 207

    Article  CAS  Google Scholar 

  12. Çavdar U, Ünlü B S, Pinar A M and Atik E 2015 Mater. Des. 65 312

    Article  Google Scholar 

  13. Suś-Ryszkowska M, Wejrzanowski T, Pakieła Z and Kurzydłowski K J 2004 Mater. Sci. Eng. A 369 151

    Article  Google Scholar 

  14. Stewart D, Osetskiy Y and Stoller R 2011 J. Nucl. Mater. 417 1110

    Article  CAS  Google Scholar 

  15. Yuan F 2012 Sci. China Ser. G 55 1657

    Article  CAS  Google Scholar 

  16. Mori H and Ozaki T 2020 Phys. Rev. Mater. 4 040601

    Article  CAS  Google Scholar 

  17. Tateyama S, Shibuta Y and Suzuki T 2008 Scr. Mater. 59 971

    Article  CAS  Google Scholar 

  18. Sandoval L, Urbassek H M and Entel P 2009 New J. Phys. 11 103027

    Article  Google Scholar 

  19. Bowles J S and Wayman C M 1972 Metall. Trans. 3 1113

    Article  CAS  Google Scholar 

  20. Sandoval L and Urbassek H M 2009 Appl. Phys. Lett. 95 191909

    Article  Google Scholar 

  21. Pan Z, Li Y and Wei Q 2008 Acta Mater. 56 3470

    Article  CAS  Google Scholar 

  22. Lai W S and Zhao X S 2004 Appl. Phys. Lett. 85 4340

    Article  CAS  Google Scholar 

  23. Zhang M, Chen J, Sun K and Fang L 2020 Mater. Chem. Phys. 241 122414

    Article  CAS  Google Scholar 

  24. Wang J, Hu W, Li X, Xiao S and Deng H 2010 Comput. Mater. Sci. 50 373

    Article  CAS  Google Scholar 

  25. Singh S K and Parashar A 2021 Mater. Chem. Phys. 266 124549

    Article  CAS  Google Scholar 

  26. Chen K T, Wei T J, Li G C, Chen M Y, Chen Y S, Chang S W et al 2021 Mater. Chem. Phys. 271 124912

    Article  CAS  Google Scholar 

  27. Zhou W L, Ya-Zhou L, Wang B Y, Song Y Y, Niu C N and Hu S P 2021 Mater. Res. Exp. 8 066525

    Article  CAS  Google Scholar 

  28. Kumar S and Das S K 2017 Phys. Chem. Chem. Phys. 19 21024

    Article  CAS  Google Scholar 

  29. Gowthaman S and Jagadeesha T 2020 Trans. Indian Inst. Met. 73 2481

    Article  CAS  Google Scholar 

  30. Koumatos K and Muehlemann A 2017 Acta Crystallogr. Sect. A: Found. Crystallogr. 73 115

    Article  CAS  Google Scholar 

  31. Friák M and Šob M 2008 Phys. Rev. B 77 174117

    Article  Google Scholar 

  32. Meiser J and Urbassek H M 2019 Metals 9 90

    Article  CAS  Google Scholar 

  33. Karewar S, Sietsma J and Santofimia M J 2018 Acta Mater. 142 71

    Article  CAS  Google Scholar 

  34. Ju S P, Lin J S and Lee W J 2004 Nanotechnology 15 1221

    Article  CAS  Google Scholar 

  35. Byggmästar J, Granberg F, Kuronen A, Nordlund K and Henriksson K O E 2015 J. Appl. Phys. 117 014313

    Article  Google Scholar 

  36. Babu P N, Gargeya B S K, Ray B C and Pal S 2020 Mater. Today: Proc. 33 4942

    CAS  Google Scholar 

  37. Kumar S and Pattanayek S K 2019 J. Phys. Chem. B 123 9238

    Article  CAS  Google Scholar 

  38. Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N 2008 Chem. Mater. 20 4356

    Article  CAS  Google Scholar 

  39. Kitamura R, Kageyama T, Koyanagi J and Ogihara S 2019 Adv. Compos. Mater. 28 135

    Article  CAS  Google Scholar 

  40. Kaijalainen A, Javaheri V, Lindell D and Porter D A 2018 IOP Conf. Ser. Mater. Sci. Eng. 375 012026

    Article  Google Scholar 

  41. Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Philos. Mag. 83 3977

    Article  CAS  Google Scholar 

  42. Ackland G J, Bacon D J, Calder A F and Harry T 1997 Philos. Mag. A 75 713

    Article  CAS  Google Scholar 

  43. Pepperhoff W and Acet M 2001 Constitution and magnetism of iron and its alloys (Berlin, Springer) p 226

    Book  Google Scholar 

  44. Plimpton S 1995 J. Comput. Phys. 117 1

    Article  CAS  Google Scholar 

  45. Verlet L 1967 Phys. Rev. 159 98

    Article  CAS  Google Scholar 

  46. Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012

    Article  Google Scholar 

  47. Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021

    Article  Google Scholar 

  48. Baughman R H, Shacklette J M, Zakhidov A A and Stafström S 1998 Nature 392 362

    Article  CAS  Google Scholar 

  49. Hoge K G 1966 Exp. Mech. 6 204

    Article  Google Scholar 

  50. Kanel G I, Razorenov S V, Garkushin G V, Ashitkov S I, Komarov P S and Agranat M B 2014 Phys. Solid State 56 1569

    Article  CAS  Google Scholar 

  51. Ho D T, Park S D, Kwon S Y, Park K and Kim S Y 2014 Nat. Commun. 5 1

    Google Scholar 

  52. Frenkel J 1926 Z Phys. 37 572

    Article  Google Scholar 

  53. Dieter G E and Bacon D 1976 Mechanical metallurgy (UK: McGraw-Hill Inc.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S., Kumar, S. Atomistic structural transformation of iron single crystal under bi-axial stretching using classical molecular dynamics simulation. Bull Mater Sci 45, 252 (2022). https://doi.org/10.1007/s12034-022-02842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02842-x

Keywords

Navigation