Skip to main content
Log in

Semiclassical dynamics of vortices in 2D easy-plane ferromagnets

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Semiclassical dynamics of magnetic vortices in 2D lattice models of easy-plane ferromagnets is investigated. It is shown that the low-energy part of the spectrum of vortices treated as quantum excitations of the system exhibits a nontrivial structure. The simplest spectrum is observed for standard magnetic vortices, in which magnetization at long distances from the center of a vortex is parallel to the basal plane. In this case, the spectrum has a band structure consisting of several nonintersecting bands, whose number is determined only by the value of atomic spin S and lattice symmetry. For purely 2D magnets with a single spin per unit cell, the number of bands is S or 2S for integral and half-integral values of spin S, respectively. For a lattice with the basis with an even number 2n of spins per unit cell, the number of bands is 2nS for any spins. The situation radically changes for vortices in the cone state as compared to standard vortices, for which the magnetization at a long distance from the center of a vortex rotates in the easy plane of the magnet. Vortices in the cone state are formed under the action of a constant external field perpendicular to the easy plane of the magnet. As a rule, the spectrum for such vortices is not a standard band spectrum and forms a set such that a forbidden energy value can be found in any small neighborhood of an allowed value, and vice versa. The possibility of an oscillatory motion of a vortex under the action of a constant external force is indicated (analog of Bloch oscillations of electrons in crystals). Possible realization of these effects in other ordered media with vortices is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  2. V. G. Baryakhtar, M. V. Chetkin, B. A. Ivanov, and S. N. Gadetskii, Dynamics of Topological Magnetic Solitons. Experiment and Theory (Springer, Berlin, 1994), Springer Tract Mod. Phys., Vol. 139.

    Google Scholar 

  3. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization: Dynamical and Topological Solitons (Naukova Dumka, Kiev, 1983) [in Russian]; Phys. Rep. 194, 117 (1990).

    Google Scholar 

  4. F. G. Mertens and A. R. Bishop, in Nonlinear Science at the Dawn of the 21st Century, Ed. by P. L. Christiansen, M. P. Soerensen, and A. C. Scott (Springer, Berlin, 2000).

    Google Scholar 

  5. V. L. Berezinskiĭ, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1970)]; Zh. Éksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)].

    Google Scholar 

  6. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  7. D. D. Wiesler, H. Zabel, and S. M. Shapiro, Z. Phys. B 93, 277 (1994).

    Article  Google Scholar 

  8. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    Article  ADS  Google Scholar 

  9. R. J. Donnely, Quantized Vortices in Helium II, Ed. by A. M. Goldman, P. V. E. McClintock, and M. Springford (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  10. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1996; Mir, Moscow, 1968).

    Google Scholar 

  11. G. Baltter, M. V. Feigelman, V. B. Geshkenbein, et al., Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  12. M. R. Mathews, B. P. Anderson, P. C. Halljan, et al., Phys. Rev. Lett. 83, 2498 (1999).

    Article  ADS  Google Scholar 

  13. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Article  ADS  Google Scholar 

  14. Yu. S. Kivshar and B. Luther-Davids, Phys. Rep. 298, 81 (1998).

    Article  ADS  Google Scholar 

  15. A. A. Thiele, Phys. Rev. Lett. 30, 239 (1973).

    Article  ADS  Google Scholar 

  16. A. V. Nikiforov and É. B. Sonin, Zh. Éksp. Teor. Fiz. 85, 642 (1983) [Sov. Phys. JETP 58, 373 (1983)].

    Google Scholar 

  17. D. L. Huber, Phys. Rev. B 26, 3758 (1982).

    Article  ADS  Google Scholar 

  18. Pink Ao and D. J. Thouless, Phys. Rev. Lett. 72, 132 (1994); M. J. Stephen, Phys. Rev. Lett. 72, 1534 (1994).

    Article  ADS  Google Scholar 

  19. A. Yu. Galkin and B. A. Ivanov, Phys. Rev. Lett. 83, 3053 (1999); Phys. Rev. B 66, 054507 (2002).

    Article  ADS  Google Scholar 

  20. P. G. Harper, Proc. Phys. Soc. London, Sect. A 68, 879 (1955).

    Article  MATH  ADS  Google Scholar 

  21. M. Wilkinson, J. Phys. A 27, 8123 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin, Phys. Rev. B 58, 8464 (1998).

    Article  ADS  Google Scholar 

  23. B. A. Ivanov and G. M. Wysin, Phys. Rev. B 65, 134434 (2002).

    Google Scholar 

  24. E. Fradkin, Field Theories of Condensed Matter Systems (Addison-Wesley, Redwood City, 1991), Front. Phys., Vol. 82.

    MATH  Google Scholar 

  25. B. A. Ivanov, Fiz. Nizk. Temp. 31, 841 (2005) [Low Temp. Phys. 31, 735 (2005)].

    Google Scholar 

  26. K. Yu. Guslienko, B. A. Ivanov, Y. Otani, et al., J. Appl. Phys. 91, 8037 (2002); K. Yu. Guslienko, X. F. Han, D. J. Keavney, et al., Phys. Rev. Lett. 96, 067205 (2006).

    Article  ADS  Google Scholar 

  27. B. A. Ivanov, A. K. Kolezhuk, and G. M. Wysin, Phys. Rev. Lett. 76, 511 (1996).

    Article  ADS  Google Scholar 

  28. J. B. Taylor and B. McNamara, Phys. Fluids 14, 1492 (1971).

    Article  Google Scholar 

  29. S. B. Choe, Y. Acremann, A. Scholl, et al., Science 304, 420 (2004); X. Zhu, Zh. Liu, V. Metlushko, et al., Phys. Rev. B 71, 1804089R (2005); C. E. Zaspel, B. A. Ivanov, P. A. Crowell, and J. Park, Phys. Rev. B 72, 024427 (2005).

    Article  ADS  Google Scholar 

  30. B. A. Ivanov and D. D. Sheka, Fiz. Nizk. Temp. 21, 1148 (1995) [Low Temp. Phys. 21, 881 (1995)].

    Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Butterworth, Oxford, 1991).

    Google Scholar 

  32. A. A. Andronov, A. A. Vitt, and S. E. Khaĭkin, Theory of Oscillators (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1966).

    Google Scholar 

  33. B. A. Ivanov and H.-J. Mikeska, Phys. Rev. B 70, 174409 (2004).

    Google Scholar 

  34. E. G. Galkina and B. A. Ivanov, Pis’ma Zh. Éksp. Teor. Fiz. 61, 495 (1995) [JETP Lett. 61, 511 (1995)].

    ADS  Google Scholar 

  35. A. I. Vaĭnshteĭn, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Usp. Fiz. Nauk 136, 553 (1982) [Sov. Phys. Usp. 25, 195 (1982)].

    Google Scholar 

  36. Quantum Tunneling of Magnetization, Ed. by L. Gunter and B. Barbara (Kluwer Dordrecht, 1995), NATO ASI Ser., Ser. E, Vol. 301.

  37. B. A. Ivanov and N. E. Kulagin, Zh. Éksp. Teor. Fiz. 126, 1479 (2004) [JETP 99, 1291 (2004)].

    Google Scholar 

  38. I. Affleck, J. Phys.: Condens. Matter 1, 3047 (1989); in Fields, Strings, and Critical Phenomena, Ed. by E. Brezin and J. Zinn-Justin (North-Holland, Amsterdam, 1990), p. 567.

    Article  ADS  Google Scholar 

  39. G. M. Wysin, Phys. Rev. B 49, 8780 (1994).

    Article  ADS  Google Scholar 

  40. M. Ya. Azbel’, Zh. Éksp. Teor. Fiz. 46, 929 (1964) [Sov. Phys. JETP 19, 634 (1964)]; D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

    Google Scholar 

  41. I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).

    Google Scholar 

  42. A. M. Kosevich, Fiz. Nizk. Temp. 27, 699 (2001) [Low Temp. Phys. 27, 513 (2001)].

    Google Scholar 

  43. A. M. Kosevich and I. D. Vagner, Fiz. Nizk. Temp. 25, 868 (1999) [Low Temp. Phys. 25, 650 (1999)].

    Google Scholar 

  44. G. H. Wannier, Phys. Rev. 117, 432 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. M. Pomerantz, Surf. Sci. 142, 556 (1984).

    Article  Google Scholar 

  46. B. A. Ivanov and D. D. Sheka, Phys. Rev. Lett. 72, 404 (1994); Zh. Éksp. Teor. Fiz. 107, 1626 (1995) JETP 80, 907 (1995)].

    Article  ADS  Google Scholar 

  47. H.-J. Mikeska and M. Steiner, Adv. Phys. 40, 191 (1991).

    Article  ADS  Google Scholar 

  48. S. O. Demokritov, A. A. Serga, A. Andre, et al., Phys. Rev. Lett. 93, 047201 (2004).

    Google Scholar 

  49. H. Trompeter, W. Krolikowski, D. N. Neshev, et al., Phys. Rev. Lett. 96, 053903 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Yu. Galkin, B.A. Ivanov, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 5, pp. 888–907.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galkin, A.Y., Ivanov, B.A. Semiclassical dynamics of vortices in 2D easy-plane ferromagnets. J. Exp. Theor. Phys. 104, 775–791 (2007). https://doi.org/10.1134/S1063776107050123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107050123

PACS numbers

Navigation