Skip to main content
Log in

Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The interaction of a vortex-like domain wall moving in an external magnetic field with a three-dimensional periodic chain of cubic volumes with high values of the saturation magnetization and magnetic anisotropy constant has been investigated theoretically. It has been found that the result of the interaction depends on the initial distance between the wall and the region of inhomogeneity of magnetic parameters at the moment of turning on the external magnetic field. The pinning of domain walls near the regions with high values of the saturation magnetization and magnetic anisotropy constant has been investigated, and the anisotropy of the corresponding depinning fields has been revealed. The method of investigation is the numerical micromagnetic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. La Bonte, J. Appl. Phys. 40, 2450 (1969).

    Article  ADS  Google Scholar 

  2. B. N. Filippov and L. G. Konunin, IEEE Trans. Magn. 29, 2563 (1993).

    Article  ADS  Google Scholar 

  3. M. J. Donahue and D. G. Porter, OOMMF User’s Guide: Version 1.0 NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, Maryland, United States, 1999).

    Google Scholar 

  4. A. Hubert and R. Schäfer, Magnetic Domains (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  5. A. Hubert, Phys. Status Solidi A 32, 519 (1969).

    Article  Google Scholar 

  6. E. Schlomann, J. Appl. Phys. 44, 1837 (1973).

    Article  ADS  Google Scholar 

  7. M. R. Sheinfein, J. Unguris, J. L. Blue, K. J. Coakley, D. T. Pierce, R. J. Celotta, and P. J. Ryan, Phys. Rev. B: Condens. Matter 43, 3395 (1991).

    Article  ADS  Google Scholar 

  8. K. Ramstöck, W. Hartung, and A. Hubert, Phys. Status Solidi A 155, 505 (1996).

    Article  ADS  Google Scholar 

  9. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, J. Magn. Magn. Mater. 218, 103 (2000).

    Article  ADS  Google Scholar 

  10. M. Redjdal, A. Kakay, M. F. Ruane, and F. B. Humphrey, J. Appl. Phys. 91, 8278 (2002).

    Article  ADS  Google Scholar 

  11. B. N. Filippov, Phys. Solid State 50(4), 670 (2008).

    Article  ADS  Google Scholar 

  12. V. V. Zverev and B. N. Filippov, J. Exp. Theor. Phys. 117(1), 108 (2013).

    Article  ADS  Google Scholar 

  13. M. N. Dubovik, V. V. Zverev, and B. N. Filippov, Phys. Solid State 55(10), 2057 (2013).

    Article  ADS  Google Scholar 

  14. S. W. Yuan and H. N. Bertram, Phys. Rev. B: Condens. Matter 44, 12395 (1991).

    Article  ADS  Google Scholar 

  15. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, Phys. Rev. B: Condens. Matter 70, 174411 (2004).

    Article  ADS  Google Scholar 

  16. J. Y. Lee, K. S. Lee, S. Choi, K. Y. Guslienko, and S. K. Kim, Phys. Rev. B: Condens. Matter 76, 184408 (2007).

    Article  ADS  Google Scholar 

  17. V. V. Volkov and V. A. Bokov, Phys. Solid State 50(2), 199 (2008).

    Article  ADS  Google Scholar 

  18. S. Parkin, M. Hayashi, and L. Thomas, Science (Washington) 320, 190 (2008).

    Article  ADS  Google Scholar 

  19. E. G. Ekomasov, Sh. A. Azamatov, R. R. Murtazin, A. M. Gumerov, and A. D. Davletshina, Bull. Russ. Acad. Sci.: Phys. 74(10), 1459 (2010).

    Article  MATH  Google Scholar 

  20. E. G. Ekomasov, R. R. Murtazin, O. B. Bogomazova, and A. M. Gumerov, J. Magn. Magn. Mater. 339, 133 (2013).

    Article  ADS  Google Scholar 

  21. H. Asada, H. Ii, J. Yamasaki, M. Takezawa, and T. Koyanagi, J. Appl. Phys. 97, 10E317 (2005).

    Article  Google Scholar 

  22. G. Herzer, in Handbook of Magnetism and Advanced magnetic Materials, Volume 4: Novel Materials, Ed. by H. Kronmüller and S. Parkin (Wiley, New York, 2007), p. 1424.

  23. N. I. Noskova, V. V. Shulica, and A. P. Potapov, Mater. Trans. 42, 1540 (2001).

    Article  Google Scholar 

  24. W. H. Meiklejohn and S. P. Bean, Phys. Rev. 105, 904 (1957).

    Article  ADS  Google Scholar 

  25. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys. 41 175005 (2008).

    Article  Google Scholar 

  26. D. G. Porter and M. J. Donahue, J. Appl. Phys. 95, 6729 (2004).

    Article  ADS  Google Scholar 

  27. B. N. Filippov and L. G. Korzunin, J. Exp. Theor. Phys. 94(2), 315 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Dubovik.

Additional information

Original Russian Text © B.N. Filippov, M.N. Dubovik, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 5, pp. 931–938.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, B.N., Dubovik, M.N. Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls. Phys. Solid State 56, 967–974 (2014). https://doi.org/10.1134/S1063783414050084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414050084

Keywords

Navigation