Skip to main content
Log in

Semiclassical model of a one-dimensional quantum dot

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A one-dimensional quantum dot at zero temperature is used as an example for developing a consistent semiclassical method. The method can also be applied to systems of higher dimension that admit separation of variables. For electrons confined by a quartic potential, the Thomas-Fermi approximation is used to calculate the self-consistent potential, the electron density distribution, and the total energy as a function of the electron number and the effective electron charge representing the strength of interaction between electrons. Use is made of scaling with respect to the electron number. An energy quantization condition is derived. The oscillating part of the electron density and both gradient and shell corrections to the total electron energy are calculated by using the results based on the Thomas-Fermi model and analytical expressions derived in this study. The dependence of the shell correction on the interaction strength is examined. Comparisons with results calculated by the density functional method are presented. The relationship between the results obtained and the Strutinsky correction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, MA, 1997).

    MATH  Google Scholar 

  2. V. M. Strutinsky, Nucl. Phys. A 122, 1 (1968).

    Article  ADS  Google Scholar 

  3. M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  4. D. A. Kirzhnits, Yu. E. Lozovik, and G. V. Shpatakovskaya, Usp. Fiz. Nauk 111, 3 (1975) [Sov. Phys. Usp. 16, 587 (1975)].

    Google Scholar 

  5. G. V. Shpatakovskaya, Teplofiz. Vys. Temp. 23, 42 (1985).

    ADS  Google Scholar 

  6. E. A. Kuz’menkov and G. V. Shpatakovskaya, Int. J. Thermophys. 13, 315 (1992).

    Article  Google Scholar 

  7. D. A. Kirzhnits and G. V. Shpatakovskaya, Preprint No. 33, FI RAN (Physical Inst., Russian Academy of Sciences, Moscow, 1998).

  8. G. V. Shpatakovskaya, Pis’ma Zh. Éksp. Teor. Fiz. 70, 333 (1999) [JETP Lett. 70, 334 (1999)]; condmat/0001116.

    Google Scholar 

  9. G. V. Shpatakovskaya, Zh. Éksp. Teor. Fiz. 118, 87 (2000) [JETP 91, 76 (2000)].

    Google Scholar 

  10. G. V. Shpatakovskaya, Pis’ma Zh. Éksp. Teor. Fiz. 73, 306 (2001) [JETP Lett. 73, 268 (2001)].

    Google Scholar 

  11. D. Ullmo, T. Nagano, S. Tomsovic, and H. U. Baranger, Phys. Rev. B 63, 125339 (2001).

    Google Scholar 

  12. D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems (Gosatomizdat, Moscow, 1963; Pergamon, Oxford, 1967).

    Google Scholar 

  13. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  14. Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. H. March (Plenum, New York, 1983; Mir, Moscow, 1987).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, New York, 1977).

    Google Scholar 

  16. A. Puente, M. Casas, and Ll. Serra, Physica E (Amsterdam) 8, 387 (2000).

    ADS  Google Scholar 

  17. Ll. Serra and A. Puente, Eur. Phys. J. 14, 77 (2001).

    ADS  Google Scholar 

  18. D. Ullmo, H. Jiang, W. Yang, and H. U. Baranger, Phys. Rev. B 70, 205309 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Shpatakovskaya, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 3, pp. 533–542.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpatakovskaya, G.V. Semiclassical model of a one-dimensional quantum dot. J. Exp. Theor. Phys. 102, 466–474 (2006). https://doi.org/10.1134/S1063776106030095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106030095

PACS numbers

Navigation