Skip to main content
Log in

Determination of the Absolute Configuration of Monoatomic Chiral Crystals Using Three-Wave X-ray Diffraction

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Many molecules and crystals are chiral, i.e., can exist as right- and left-handed mirror isomers. It is shown that the absolute configuration of monoatomic chiral crystals, including selenium, tellurium, and β-manganese, can be determined using multi-wavelength diffraction of circularly polarized X-ray radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFEENCES

  1. L. A. Nguyen, H. He, and C. Pham-Huy, Int. J. Biomed. Sci. 2 (2), 85 (2006).

    Google Scholar 

  2. S. H. Yang, Nat. Mater. 21 (5), 494 (2022). https://doi.org/10.1038/s41563-022-01228-y

    Article  ADS  Google Scholar 

  3. F. Calavalle, M. Suárez-Rodríguez, B. Martín-García, et al., Nat. Mater. 21 (5), 526 (2022). https://doi.org/10.1038/s41563-022-01211-7

    Article  ADS  Google Scholar 

  4. G. J. McIntyre, Acta Crystallogr. 34, 936 (1978). https://doi.org/10.1107/S0567739478001916

    Article  Google Scholar 

  5. P. J. Brown and J. B. Forsyth, Acta Crystallogr. A 52 (3), 408 (1996). https://doi.org/10.1107/S0108767395017144

    Article  Google Scholar 

  6. Y. Tanaka, T. Kojima, Y. Takata, et al., Phys. Rev. B 81 (14), 144104 (2010). https://doi.org/10.1103/PhysRevB.81.144104

  7. A. Winkelmann, G. Cios, T. Tokarski, et al., arXiv: 2011.14422v1 1, 1 (2020).

  8. M. Renninger, Z. Phys. 106 (3–4), 141 (1937). https://doi.org/10.1007/BF01340315

    Article  ADS  Google Scholar 

  9. K. Kozlovskaya, E. Ovchinnikova, J. Kokubun, et al., Crystals 11 (11), 1389 (2021). https://doi.org/10.3390/cryst11111389

    Article  Google Scholar 

  10. G. Mayer, Z. Krist. 66 (1), 585 (1928). https://doi.org/10.1524/zkri.1928.66.1.585

  11. A. Authier, International Tables for Crystallography (Springer, Dordrecht, 2006), Vol. B, p. 534. https://doi.org/10.1107/97809553602060000569

    Book  Google Scholar 

  12. J. Kokubun, K. Ishida, and V. E. Dmitrienko, J. Phys. Soc. Jpn. 67 (4), 1291 (1998). https://doi.org/10.1143/jpsj.67.1291

    Article  ADS  Google Scholar 

  13. J. Kokubun, M. Kanazawa, K. Ishida, and V. E. Dmitrienko, Phys. Rev. B 64 (7), 073203 (2001). https://doi.org/10.1103/PhysRevB.64.073203

  14. V. E. Dmitrienko and E. N. Ovchinnikova, Crystallogr. Rep. 48 (6), S59 (2003).

    Google Scholar 

  15. K. A. Kozlovskaya, A. Ustyugov, S. V. Ivanov, et al., Uch. Zap. Fiz. Fak. Mosk. Gos. Univ. 6, 1 (2020).

    Google Scholar 

  16. K. A. Kozlovskaya, A. G. Kulikov, D. Novikov, et al., Cryst. Res. Technol. 56, 2000195 (2021). https://doi.org/10.1002/crat.202000195

  17. E. Ovchinnikova, D. Novikov, M. Zschornak, et al., Crystals 10 (9), 719 (2020). https://doi.org/10.3390/cryst10090719

    Article  Google Scholar 

  18. E. N. Ovchinnikova, A. Rogalev, F. Wilhelm, et al., J. Synchrotron Radiat. 28, 1455 (2021). https://doi.org/10.1107/S1600577521005853

    Article  Google Scholar 

  19. A. Rogalev, F. Wilhelm, E. Ovchinnikova, et al., Crystals 11, 544 (2021). https://doi.org/10.3390/cryst11050544

    Article  Google Scholar 

  20. G. D. Preston, London, Edinburgh, Dublin Philos. Mag. J. Sci. 5 (33), 1207 (1928). https://doi.org/10.1080/14786440608564570

    Article  Google Scholar 

  21. V. S. Zasimov, R. N. Kuz’min, A. Yu. Aleksandrov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 15 (7), 394 (1972).

    Google Scholar 

  22. A. S. Avilov and R. M. Imamov, Sov. Phys. Crystallogr. 14, 259 (1969).

    Google Scholar 

  23. A. J. Bradley, London, Edinburgh, Dublin Philos. Mag. J. Sci. 48 (285), 477 (1924). https://doi.org/10.1080/14786442408634511

    Article  Google Scholar 

  24. M. S. Platunov, Ya. V. Zubavichus, S. G. Ovchinnikov, et al., Technological Infrastructure of the Siberian Ring Photon Source “SKIFˮ (FITs "Institut Kataliza im. G.K. Boreskova SO RAN,” Novosibirsk, 2022), Vol. 3, p. 313 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kozlovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskaya, K.A., Ovchinnikova, E.N., Ustyugov, A.M. et al. Determination of the Absolute Configuration of Monoatomic Chiral Crystals Using Three-Wave X-ray Diffraction. Crystallogr. Rep. 68, 374–379 (2023). https://doi.org/10.1134/S1063774523700050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523700050

Navigation