Skip to main content
Log in

Diffraction of X-rays in Crystals: A Tensor Approach

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The use of X-ray synchrotron radiation makes it possible to observe the polarization, spectral, and angular dependences for diffraction reflections. Their theoretical study calls for application of a tensor approach to describe the interaction of X-rays with atoms of matter. Various representations of the tensor atomic scattering amplitude, results of experimental observations of the anisotropy of resonant X-ray scattering, and the relationship of the electric and magnetic multipole moments on atoms with the properties of forbidden resonant reflections are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. S. T. Konobeevskii, Usp. Fiz. Nauk 44, 21 (1951).

    Article  Google Scholar 

  2. G. S. Zhdanov, X-rays (Gos. Izd-vo Tekhn.-Teoret. Lit., Leningrad, 1949) [in Russian].

    Google Scholar 

  3. G. S. Zhdanov, A. S. Ilyushin, and S. V. Nikitina, Diffraction and Resonance Structural Analysis (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  4. V. I. Iveronova and G. P. Revkevich, Theory of X-ray Scattering (Mosk. Gos. Univ., Moscow, 1972) [in Russian].

    Google Scholar 

  5. M. M. Umanskii, Equipment for X-ray Diffraction Studies (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  6. R. James, Optical Principles of X-ray Diffraction (Bell, London, 1948).

    Google Scholar 

  7. Yu. A. Izyumov and R. P. Ozerov, Magnetic Neutron Diffraction Analysis (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  8. G. T. Trammell, Phys. Rev. 126, 1045 (1962).

    Article  ADS  Google Scholar 

  9. Yu. Kagan and A. M. Afanas’ev, Zh. Eksp. Teor. Fiz. 49, 1504 (1965).

    Google Scholar 

  10. A. M. Afanas’ev and Yu. Kagan, Pis’ma Zh. Eksp. Teor. Fiz. 2, 130 (1965).

    Google Scholar 

  11. M. Blume and O. S. Kistner, Phys. Rev. 171, 417 (1968).

    Article  ADS  Google Scholar 

  12. M. A. Andreeva and R. N. Kuz’min, Mössbauer γ-Optics (Izd-vo MGU, Moscow, 1982) [in Russian].

    Google Scholar 

  13. V. S. Zasimov, R. N. Kuz’min, A. Yu. Aleksandrov, and A. I. Firov, Pis’ma Zh. Eksp. Teor. Fiz. 15, 394 (1972).

    Google Scholar 

  14. G. S. Zhdanov and R. N. Kuz’min, Acta Crystallogr. B 24, 10 (1968). https://doi.org/10.1107/S0567740868001639

    Article  Google Scholar 

  15. A. V. Kolpakov, V. A. Bushuev, and R. N. Kuz’min, Usp. Fiz. Nauk 126, 479 (1978).

    Article  ADS  Google Scholar 

  16. A. Rogalev, F. Wilhelm, N. Jaouen, et al., Magnetism and Synchrotron Radiation, Part 4, Ed. by E. Beaurepaire (2001).

    Google Scholar 

  17. W. Kartschagin and E. Tschetverikowa, Z. Phys. 39, 886 (1926).

    Article  ADS  Google Scholar 

  18. M. Amara and P. Morin, J. Phys.: Condens. Matter 10, 9875 (1998). https://doi.org/10.1088/0953-8984/10/43/032

    Article  ADS  Google Scholar 

  19. Y. Murakami, H. Kawada, H. Kawata, et al., Phys. Rev. Lett. 80, 1932 (1998). https://doi.org/10.1103/PhysRevLett.80.1932

    Article  ADS  Google Scholar 

  20. M. Blume, J. Appl. Phys. 57, 3615 (1985). https://doi.org/10.1063/1.335023

    Article  ADS  Google Scholar 

  21. P. M. Platzman and N. Tzoar, Phys. Rev. B 2, 3556 (1970). https://doi.org/10.1103/PhysRevB.2.3556

    Article  ADS  Google Scholar 

  22. F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 314 (1981). https://doi.org/10.1107/S0567739481000739

    Article  ADS  Google Scholar 

  23. J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett. 61, 1245 (1988). https://doi.org/10.1103/PhysRevLett.61.1245

    Article  ADS  Google Scholar 

  24. S. W. Lovesey, E. Balcar, K. S. Knight, and J. Rodríguez Fernández, Phys. Rep. 411, 233 (2005). https://doi.org/10.1016/j.physrep.2005.01.003

    Article  ADS  Google Scholar 

  25. S. Grenier and Y. Joly, J. Phys.: Conf. Ser. 519, 012001 (2014). https://doi.org/10.1088/1742-6596/519/1/012001

  26. V. E. Dmitrienko, K. Ishida, and A. Kirfel, Acta Crystallogr. A 61, 481 (2005). https://doi.org/10.1107/S0108767305018209

    Article  ADS  Google Scholar 

  27. L. Paolazini, Collection SFN 13, 03002 (2014). https://doi.org/10.1051/sfn/20141303002

    Article  Google Scholar 

  28. Ch. Brouder, J. Phys.: Condens. Matter 2, 701 (1990). https://doi.org/10.1088/0953-8984/2/3/018

    Article  ADS  Google Scholar 

  29. M. Blume, Resonant Anomalous X-ray Scattering, Ed. by G. Materlik (Elsevier, Amsterdam, 1994), p. 495.

    Google Scholar 

  30. P. Carra and T. Thole, Rev. Mod. Phys. 66, 1509 (1994). https://doi.org/10.1103/RevModPhys.66.1509

    Article  ADS  Google Scholar 

  31. D. Feil, Cryst. Rev. 8, 95 (2002). https://doi.org/10.1080/0889311021000049770

    Article  Google Scholar 

  32. A. Kirfel, A. Petcov, and K. Eichhorn, Acta Crystallogr. A 47, 180 (1991). https://doi.org/10.1107/S010876739001159X

    Article  Google Scholar 

  33. G. van der Laan, B. T. Thole, G. A. Sawatzky, et al., Phys. Rev. B 34, 6529 (1986). https://doi.org/10.1103/PhysRevB.34.6529

    Article  ADS  Google Scholar 

  34. B. T. Thole, G. van der Laan, and G. A. Sawatzky, Phys. Rev. Lett. 55, 2086 (1985). https://doi.org/10.1103/PhysRevLett.55.2086

    Article  ADS  Google Scholar 

  35. L. Alagna, T. Prosperi, S. Turchini, et al., Phys. Rev. Lett. 80, 4799 (1998). https://doi.org/10.1103/PhysRevLett.80.4799

    Article  ADS  Google Scholar 

  36. J. Goulon, A. Rogalev, F. Wilhelm, et al., Phys. Rev. Lett. 88, 237401 (2002). https://doi.org/10.1103/PhysRevLett.88.237401

  37. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993). https://doi.org/10.1103/PhysRevLett.70.694

    Article  ADS  Google Scholar 

  38. M. Altarelli, Phys. Rev. B 47, 597 (1993). https://doi.org/10.1103/PhysRevB.47.597

    Article  ADS  Google Scholar 

  39. P. Gambardella, A. Dallmeyer, K. Maiti, et al., Nature 416, 301 (2002). https://doi.org/10.1038/416301a

    Article  ADS  Google Scholar 

  40. A. Enders, R. Skomski, and J. Honolka, J. Phys.: Condens. Matter 22, 433001 (2010). https://doi.org/10.1088/0953-8984/22/43/433001

  41. A. Scholl, H. Ohldag, F. Nolting, et al., Magnetic Microscopy of Nanostructures. NanoScience and Technology, Ed. by H. Hopster and H. P. Oepen (Springer, Berlin, 2005).

    Google Scholar 

  42. A. Stifler, K. N. Wittig, M. Sassi, et al., J. Am. Chem. Soc. 140, 11698 (2018). https://doi.org/10.1021/jacs.8b05547

    Article  Google Scholar 

  43. M. S. Platunov, I. A. Gudim, E. N. Ovchinnikova, et al., Crystals 11, 1 (2021). https://doi.org/10.3390/cryst11050531

    Article  Google Scholar 

  44. J. L. Hodeau, V. Favre-Nicolin, S. Bos, et al., Chem. Rev. 101, 1843 (2001). https://doi.org/10.1021/cr0000269

    Article  Google Scholar 

  45. T. C. Terwilliger and J. Berendzen, Acta Crystallogr. D 55, Part. 4, 849 (1999). https://doi.org/10.1107/S0907444999000839

    Article  Google Scholar 

  46. N. Bouldi and C. Brouder, Eur. Phys. J. B 90, 246 (2017). https://doi.org/10.1140/epjb/e2017-80266-5

    Article  ADS  Google Scholar 

  47. A. P. Oreshko, J. Exp. Theor. Phys. 133, 383 (2021).

    Article  ADS  Google Scholar 

  48. W. Heitler, Quantum Theory of Radiation (Clarendon, Oxford, 1936).

    MATH  Google Scholar 

  49. A. P. Oreshko, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 4, 3 (2021).

  50. A. J. Silenko, Phys. Rev. A 93, 022108 (2016). https://doi.org/10.1103/PhysRevA.93.022108

  51. L. Shiff, Quantum Mechanics (McGraw-Hill, New York, 1955).

    Google Scholar 

  52. M. Altarelli, Magnetism: A Synchrotron Radiation Approach, Ed. by E. Beaurepaire (Springer, Berlin, 2006), p. 201.

    Google Scholar 

  53. M. Altarelli, Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, Ed. by E. Beaurepaire (Springer, Berlin, 2013), p. 95.

    Google Scholar 

  54. F. de Groot, Coord. Chem. Rev. 249, 31 (2005). https://doi.org/10.1016/j.ccr.2004.03.018

    Article  Google Scholar 

  55. J. Goulon, A. Rogalev, F. Wilhelm, et al., J. Exp. Theor. Phys. 97, 402 (2003). https://doi.org/10.1134/1.16090012003

    Article  ADS  Google Scholar 

  56. P. Carra, A. Jerez, and I. Marri, Phys. Rev. B 67, 045111 (2003). https://doi.org/10.1103/PhysRevB.67.045111

  57. P. Carra and R. Benoist, Phys. Rev. B 62, R7703 (2000). https://doi.org/10.1103/PhysRevB.62.R7703

    Article  ADS  Google Scholar 

  58. J. Goulon, A. Rogalev, F. Wilhelm, et al., Phys. Rev. Lett. 88, 237401 (2002). https://doi.org/10.1103/PhysRevLett.88.237401

  59. J. Goulon, A. Rogalev, F. Wilhelm, et al., J. Phys.: Condens. Matter 15, S633 (2003). http://stacks.iop.org/0953-8984/15/S633/c30516.pdf

    Google Scholar 

  60. M. Brunel and F. de Bergevin, Acta Crystallogr. A 37, 324 (1981). https://doi.org/10.1107/S0567739481000740

    Article  ADS  Google Scholar 

  61. K. Namikawa, M. Ando, T. Nakajima, and H. Kawata, J. Phys. Soc. Jpn. 54, 4099 (1985). https://doi.org/10.1143/JPSJ.54.4099

    Article  ADS  Google Scholar 

  62. D. Gibbs, D. E. Moncton, and K. L. D’Amico, J. Appl. Phys. 57, 3619 (1985). https://doi.org/10.1103/PhysRevB.34.8182

    Article  ADS  Google Scholar 

  63. D. Gibbs, D. R. Harshman, E. D. Isaaks, et al., Phys. Rev. Lett. 61, 1241 (1988). https://doi.org/10.1103/PhysRevLett.61.1241

    Article  ADS  Google Scholar 

  64. C. Vettier, J. Electron, Spectrosc. Relat. Phenom. 117–118, 113 (2001). https://doi.org/10.1016/S0368-2048(01)00250-X

    Article  Google Scholar 

  65. V. E. Dmitrienko, Acta Crystallogr. A 39, 29 (1983). https://doi.org/10.1107/S0108767383000057

    Article  Google Scholar 

  66. V. E. Dmitrienko, Acta Crystallogr. A 40, 89 (1984). https://doi.org/10.1107/S0108767384000209

    Article  Google Scholar 

  67. V. A. Belyakov and V. E. Dmitrienko, Usp. Fiz. Nauk 158, 679 (1989).

    Article  Google Scholar 

  68. D. H. Templeton and L. K. Templeton, Acta Crystallogr. A 38, 62 (1982). https://doi.org/10.1107/S0567739482000114

    Article  ADS  Google Scholar 

  69. D. H. Templeton and L. K. Templeton, Acta Crystallogr. A 41, 365 (1985). https://doi.org/10.1107/S0108767385000782

    Article  Google Scholar 

  70. D. H. Templeton and L. K. Templeton, Acta Crystallogr. A 42, 478 (1986). https://doi.org/10.1107/S0108767386098859

    Article  Google Scholar 

  71. V. E. Dmitrienko and E. N. Ovchinnikova, Crystallogr. Rep. 48, S52 (2003).

    Google Scholar 

  72. E. N. Ovchinnikova and E. Kh. Mukhamedzhanov, Crystallogr. Rep. 61, 768 (2016). https://doi.org/10.1134/S1063774516050175

    Article  ADS  Google Scholar 

  73. M. M. Borisov, V. E. Dmitrienko, K. A. Kozlovskaya, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 10, 42 (2019). https://doi.org/10.1134/S1027451019050239

  74. T. Usui, Y. Tanaka, H. Nakajima, et al., Nat. Mater. 13, 611 (2014). https://doi.org/10.1038/nmat3942

    Article  ADS  Google Scholar 

  75. S. W. Lovesey and V. Scagnoli, J. Phys.: Condens. Matter. 21, 474214 (2009). https://doi.org/10.1088/0953-8984/21/47/474214

  76. T. Matsumara, D. Okuyama, N. Oumi, et al., J. Phys. Soc. Jpn. 74, 1500 (2005). https://doi.org/10.1143/JPSJ.74.1500

    Article  ADS  Google Scholar 

  77. J. Fernandez-Rodríguez, S. W. Lovesey, and J. A. Blanco, J. Phys.: Condens. Matter 22, 022202 (2010). https://doi.org/10.1088/0953-8984/22/2/022202

  78. S. Ji, C. Song, J. Koo, et al., Phys. Rev. Lett. 91, 257205 (2003). https://doi.org/10.1103/PhysRevLett.91.257205

  79. E. N. Ovchinnikova and V. E. Dmitrienko, Acta Crystallogr. A 56, 2 (2000). https://doi.org/10.1107/S0108767399010211

    Article  Google Scholar 

  80. A. P. Oreshko, E. N. Ovchinnikova, G. Beutier, et al., J. Phys.: Condens. Matter 24, 245403 (2012). https://doi.org/10.1088/0953-8984/24/24/245403

  81. E. N. Ovchinnikova, V. E. Dmitrienko, A. P. Oreshko, et al., J. Phys.: Condens. Matter 22, 355404 (2010). https://doi.org/10.1088/0953-8984/22/35/355404

  82. C. Richter, D. V. Novikov, E. Kh. Mukhamedzhanov, et al., Phys. Rev. B 89, 094110 (2014). https://doi.org/10.1103/PhysRevB.89.094110

  83. G. Beutier, S. P. Collins, G. Nisbet, et al., Phys. Rev. B 92, 1 (2015). https://doi.org/10.1088/1742-6596/519/1/012006

    Article  Google Scholar 

  84. V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, et al., Nat. Phys. 10, 202 (2014). https://doi.org/10.1038/nphys2859

    Article  Google Scholar 

  85. D. Pincini, F. Fabrizi, G. Beutier, et al., Phys. Rev. B 98, 104424 (2018). https://doi.org/10.1103/PhysRevB.98.104424

  86. G. Beutier, S. P. Collins, O. V. Dimitrova, et al., Phys. Rev. Lett. 119, 167201-1 (2017). https://doi.org/10.1103/PhysRevLett.119.167201

    Article  ADS  Google Scholar 

  87. E. Kh. Mukhamedzhanov, M. M. Borisov, A. N. Morkovin, et al., JETP Lett. 86, 783 (2007).

    Article  ADS  Google Scholar 

  88. C. Richter, M. Zschornak, D. Novikov, et al., Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-017-02599-6

    Article  Google Scholar 

  89. Ya. A. Eliovich, E. N. Ovchinnikova, K. A. Kozlovskaya, et al., JETP Lett. 115, 456 (2022). https://doi.org/10.1134/S0021364022100368

    Article  ADS  Google Scholar 

  90. V. A. Chizhikov, J. Exp. Theor. Phys. 159, 559 (2021).

    Article  ADS  Google Scholar 

  91. A. V. Tsvyashchenko, V. A. Sidorov, A. E. Petrova, et al., J. Alloys Compd. 686, 431 (2016). https://doi.org/10.1016/j.jallcom.2016.06.048

    Article  Google Scholar 

  92. E. N. Ovchinnikova, V. E. Dmitrienko, K. A. Kozlovskaya, and A. Rogalev, JETP Lett. 110, 568. https://doi.org/10.1134/S0021364019200086

  93. E. N. Ovchinnikova, K. A. Kozlovskaya, V. E. Dmitrienko, and A. P. Oreshko, Crystallogr. Rep. 67, 820 (2022).

    Article  ADS  Google Scholar 

  94. J. Goulon, N. Jaouen, A. Rogalev, et al., J. Phys.: Condens. Matter. 19, 156201 (2007). https://doi.org/10.1088/0953-8984/19/15/156201

  95. Y. Tanaka, T. Takeuchi, S. W. Lovesey, et al., Phys. Rev. Lett. 100, 1 (2008). https://doi.org/10.1103/PhysRevLett.100.145502

    Article  Google Scholar 

  96. Y. Tanaka, S. P. Collins, S. W. Lovesey, et al., J. Phys.: Condens. Matter 24 (2012). https://doi.org/10.1103/PhysRevLett.100.145502

  97. E. N. Ovchinnikova, A. Rogalev, F. Wilhelm, et al., J. Synchrotron Rad. 28, 1455 (2021). https://doi.org/10.1107/S1600577521005853

    Article  Google Scholar 

  98. A. T. Schmitt, Y. Joly, K. S. Schulze, et al., Optica 8, 56 (2021). https://doi.org/10.1364/OPTICA.410357

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.A. Chizhikov for his help in drawing Fig. 3.

Funding

The study was supported in part by the Ministry of Science and Education of the Russian Federation, grant no. 075-15-2021-1353. Dmitrienko acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ovchinnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oreshko, A.P., Ovchinnikova, E.N. & Dmitrienko, V.E. Diffraction of X-rays in Crystals: A Tensor Approach. Crystallogr. Rep. 68, 351–362 (2023). https://doi.org/10.1134/S1063774523700013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523700013

Navigation