Skip to main content
Log in

Microstructure of Gel Films of Bacterial Cellulose Synthesized under Static Conditions of Cultivation of the Gluconacetobacter hansenii GH-1/2008 Strain on Nutrient Media with Different Carbon Sources

  • SURFACE, THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The study presents a comparative analysis of the structures of dried films of bacterial cellulose (BC) produced by bacteria of the Gluconacetobacter hansenii GH-1/2008 strain under static conditions of cultivation on nutrient media with different carbon sources, such as glucose, sucrose, maltose, fructose, and lactose. It was found that the supramolecular structure of the films is a three-dimensional network composed of orientationally ordered microfibrils with an average diameter from 30 to 60 nm, which consist of crystalline and amorphous regions. An analysis of the powder X-ray diffraction patterns demonstrated that the crystalline regions of microfibrils are formed by cellulose I. Depending on the composition of the nutrient medium, the degree of crystallinity of the films varies in the range from ~20 to 90%. It was found that, regardless of the carbon source, the top and bottom surfaces of BC films have different microstructures defined by static conditions of cultivation. Thus, the top surface of gel films contains pores with a diameter of up to 500 nm, whereas a wider pore size distribution (up to 600 nm) is observed on the bottom surface. The difference between the average pore sizes on the top and bottom surfaces varies from 95 to 180 nm and from 100 to 200 nm, respectively. The measurements of the mechanical properties of the films showed that the films produced by the cultivation on media containing fructose and sucrose have the maximum strength, whereas the films produced using lactose and maltose have the minimum strength. The data on the BC productivity of the GH-1/2008 strain were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. Basu, S. V. Vadanan, and S. Lim, Sci Rep. 447 (2018). https://doi.org/10.1038/s41598-018-23701-y

  2. P. Ross, R. Mayer, and M. Benziman, Microbiol. Rev. 55 (1), 35 (1991). https://doi.org/10.1128/mr.55.1.35-58.1991

    Article  Google Scholar 

  3. E. A. Hassan, H. M. Abdelhady, S. S. A. El-Salam, et al., Microbiol. Res. J. 9, 1 (2015). https://doi.org/10.9734/BMRJ/2015/18223

    Article  Google Scholar 

  4. F. Hong and K. Qiu, Carbohydr. Polym. 545 (2008). https://doi.org/10.1016/j.carbpol.2007.09.015

  5. Y. Huang, C. Zhu, J. Yang, et al., Cellulose 21, 1 (2014). https://doi.org/10.1007/s10570-013-0088-z

    Article  Google Scholar 

  6. A. N. Frone, D. M. Panaitescu, C. A. Nicolae, et al., Polymers 14, 5358 (2020). https://doi.org/10.3390/polym14245358

    Article  Google Scholar 

  7. N. Arkharova, E. Suvorova, A. Severin, et al., Scanning 38, 757 (2016). https://doi.org/10.1002/sca.21325

    Article  Google Scholar 

  8. A. Svensson, E. Nicklasson, T. Harrah, et al., Biomaterials 419 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.049

  9. A. L. Buyanov, I. V. Gofman, A. K. Khripunov, et al., Vysokomol. Soedin. A 55, 512 (2013). https://doi.org/10.7868/S0507547513050036

    Article  Google Scholar 

  10. L. Millon and W. Wan, Biomed. Mater. Res. B. Appl. Biomater. 79 (2), 245 (2006). https://doi.org/10.1002/jbm.b.30535

    Article  Google Scholar 

  11. D. Klemm, D. Schumann, U. Udhardt, et al., Prog. Polym. Sci. 26, 1561 (2001). https://doi.org/10.1016/S0079-6700(01)00021-1

    Article  Google Scholar 

  12. Y. Wan, C. Gao, M. Han, et al., Polym. Adv. Technol. 22, 2643 (2011). https://doi.org/10.3390/app9010107

    Article  Google Scholar 

  13. J. Wang, C. Gao, Y. Zhang, et al., Mater. Sci. Eng. C 214 (2010). https://doi.org/10.1016/j.msec.2009.10.006

  14. A. Yoshino, M. Tabuchi, and M. Uo, Acta Biomater. 9, 6116 (2013). https://doi.org/10.1016/j.actbio.2012.12.022

    Article  Google Scholar 

  15. T. W. Coffindaffer, B. P. Heath, K. E. Kyte, et al., US Patent No. 8 097 574 (2012).

  16. N. Hasan, D. R. A. Biak, and S. Kamarudin, Int. J. Adv. Sci. Eng. Inform. Technol. 2, 272 (2012). https://doi.org/10.18517/ijaseit.2.4.201

    Article  Google Scholar 

  17. T. Amnuaikit, T. Chusuit, P. Raknam, et al., Med. Dev. 4, 77 (2011). https://doi.org/10.2147/MDER.S20935

    Article  Google Scholar 

  18. W. Czaja, D. Romanovicz, and R. Brown, Cellulose 11, 403 (2004). https://doi.org/10.1023/b:cell.0000046412.11983.61

    Article  Google Scholar 

  19. K. Watanabe, M. Tabuchi, Y. Morinaga, et al., Cellulose 5, 187 (1998). https://doi.org/10.1023/a:1009272904582

    Article  Google Scholar 

  20. J. Wang, J. Tavakoli, and Y. Tang, Carbohydr. Polym. 219, 63 (2019). https://doi.org/10.1016/j.carbpol.2019.05.008

    Article  Google Scholar 

  21. M. Bakhman, I. Yu. Petrukhin, I. Ye. Butenko, et al., EHO, No. 6–2 (40), 61 (2018).

  22. P. Singhsa, R. Narain, and H. Manuspiya, Cellulose 25, 1571 (2018). https://doi.org/10.1007/s10570-018-1699-1

    Article  Google Scholar 

  23. A. Costa, F. Almeida, G. Vinhas, et al., Front. Microbiol. 8, 528 (2017). https://doi.org/10.3389/fmicb.2017.02027

    Article  Google Scholar 

  24. D. Mikkelsen, B. M. Flanagan, G. A. Dykes, et al., Microbiology 107, 576 (2009). https://doi.org/10.1111/j.1365-2672.2009.04226.x

    Article  Google Scholar 

  25. S. M. A. S. Keshk and K. Sameshima, Afr. J. Biotechnol. 4 (6), 478 (2005). https://doi.org/10.5897/AJB2005.000-3087

    Article  Google Scholar 

  26. S. S. Wang, Y.-H. Han, J.-L. Chen, et al., Polymers 10, 963 (2018). https://doi.org/10.1016/10.3390/polym10090963

    Article  Google Scholar 

  27. O. I. Kiseleva, S. V. Lutsenko, N. B. Fel’dman, et al., Vestn. Tomsk Gos. Univ., Ser. Biol., No. 53, 22 (2021). https://doi.org/10.17223/19988591/53/2

  28. T. I. Gromovykh, M. A. Pigaleva, M. O. Gallyamov, et al., Carbohydr. Polym. 237, 116140 (2020). https://doi.org/10.1016/j.carbpol.2020.116140

  29. Z. N. Skvortsova, T. I. Gromov, V. S. Grachev, et al., Colloid J. 81 (4), 441 (2019). https://doi.org/10.1134/S1061933X19040161

    Article  Google Scholar 

  30. T. I. Gromovykh, M. K. Fan, and T. N. Danil’chuk, Patent RF, No. 2464307 (2012).

  31. S. Hestrin and M. Schramm, Biochem. J. 58, 345 (1954). https://doi.org/10.1042/bj0580345

    Article  Google Scholar 

  32. J. C. Bi, S. X. Liu, C. F. Li, et al., J. Appl. Microbiol. 117, 1305 (2014).

    Article  Google Scholar 

  33. R. Atalla and D. Vanderhart, Science 223, 283 (1984). https://doi.org/10.1126/science.223.4633.283

    Article  ADS  Google Scholar 

  34. A. D. French, Cellulose 21, 885 (2014). https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  35. H.-P. Fink, H. Purz, A. Bohn, and J. Kunze, Macromol. Symp. 120, 207 (1997). https://doi.org/10.1021/bm3005929

    Article  Google Scholar 

  36. V. V. Klechkovskaya, Yu. G. Baklagina, N. D. Stepina, et al., Crystallogr. Rep. 48 (5), 755 (2003).

    Article  ADS  Google Scholar 

  37. F. Horii, H. Yamamoto, and A. Hirai, Macromol. Symp. 120, 197 (1997). https://doi.org/10.1002/masy.19971200120

    Article  Google Scholar 

  38. L. A. Aleshina, S. V. Glazkova, L. A. Lugovskaya, et al., Khim. Rastit. Syr’ya, No. 1, 5 (2001).

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 23-29-00952) using the equipment of the Collaborative Access Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. The cultivation of the producer Gluconacetobacter hansenii GH-1/2008 was performed within the framework of the state assignment for the Moscow Polytechnic University (project no. АААА-А20-120092190052-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Bolgova or N. A. Arkharova.

Ethics declarations

The authors declare no conflict of interest, financial or otherwise.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolgova, A.L., Shevtsov, A.V., Arkharova, N.A. et al. Microstructure of Gel Films of Bacterial Cellulose Synthesized under Static Conditions of Cultivation of the Gluconacetobacter hansenii GH-1/2008 Strain on Nutrient Media with Different Carbon Sources. Crystallogr. Rep. 68, 607–614 (2023). https://doi.org/10.1134/S1063774523600369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600369

Navigation