Skip to main content
Log in

Synchrotron Study of the Effect of Tantalum Variation on the Piezoelectric Modulus d11 in Langatate Crystal

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The nonuniform distribution of chemical element ratios in a crystal of nominal composition La3(Ga0.5Ta0.5)Ga5O14 has been determined using X-ray diffraction and X-ray fluorescence mapping on beamline 6.2 of the Kurchatov synchrotron radiation source “KISI-Kurchatov.” The Ga/Ta and La/Ta ratios are shown to increase from the center to the periphery of the crystal growth boule, which is accompanied by an increase in the number of oxygen vacancies leading to a decrease in piezoelectric modulus d11. The study is of practical importance for the creation of materials with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. G. Kulikov, A. E. Blagov, A. S. Ilin, et al., J. Appl. Phys. 127, 065106 (2020). https://doi.org/10.1063/1.5131369

  2. M. V. Koval’chuk, A. E. Blagov, A. G. Kulikov, et al., Crystallogr. Rep. 59 (6), 862 (2014). https://doi.org/10.1134/S1063774514060145

    Article  ADS  Google Scholar 

  3. A. G. Kulikov, A. E. Blagov, N. V. Marchenkov, et al., JETP Lett. 107 (10), 646 (2018). https://doi.org/10.1134/S0021364018100120

    Article  ADS  Google Scholar 

  4. A. G. Kulikov, Yu. V. Pisarevskii, A. E. Blagov, et al., Phys. Solid State 61 (4), 548 (2019). https://doi.org/10.1134/S1063783419040188

    Article  ADS  Google Scholar 

  5. J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37 (10), 1113 (2002). https://doi.org/10.1002/1521-4079(200210)37:10<1113::AID-CRAT1113>3.0.CO;2-E

    Article  Google Scholar 

  6. A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevskii, et al., Crystallogr. Rep. 58 (1), 49 (2013). https://doi.org/10.1134/S1063774513010057

    Article  ADS  Google Scholar 

  7. T. Fukuda, H. Takeda, K. Shimamura, et al., Proc. 11th IEEE Int. Symp. on Applications of Ferroelectrics, Montreux, Switzerland, August 24–27, 1998, p. 315. https://doi.org/10.1109/ISAF.1998.786697

  8. V. Mill, IEEE–EIA Int. Frequency Control Symp. and Exhibition, 2000, p. 133. https://doi.org/10.1109/FREQ.2000.887343

  9. J. Bohm, E. Chilla, C. Flannery, et al., J. Cryst. Growth 216, 293 (2000). https://doi.org/10.1016/S0022-0248(00)00440-1

    Article  ADS  Google Scholar 

  10. D. Irzhak and D. Roshchupkin, J. Appl. Crystallogr. 51, 1174 (2018). https://doi.org/10.1107/S1600576718009184

    Article  Google Scholar 

  11. I. A. Kaurova, G. M. Kuz’micheva, V. B. Rybakov, et al., Inorg. Mater. 46 (9), 988 (2010). https://doi.org/10.1134/S0020168510090128

    Article  Google Scholar 

  12. I. A. Kaurova, G. M. Kuz’micheva, and A. B. Dubovskii, Inorg. Mater. 46 (10), 1131 (2010). https://doi.org/10.1134/S0020168510100195

    Article  Google Scholar 

  13. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, et al., Cryst. Res. Technol. 47 (2), 131 (2012). https://doi.org/10.1002/crat.201100356

    Article  Google Scholar 

  14. I. A. Kaurova, Candidate’s Dissertation in Chemistry (MITKhT, Moscow, 2010).

  15. G. M. Kuz’micheva, O. Zakharko, E. A. Tyunina, et al., Crystallogr. Rep. 54 (2), 279 (2009).

    Article  ADS  Google Scholar 

  16. I. A. Kaurova, G. M. Kuz’micheva, and A. Kusson, Crystallogr. Rep. 54 (2), 279 (2009). https://doi.org/10.1134/S1063774509020163

    Article  ADS  Google Scholar 

  17. W. L. Bond, Acta Crystallogr. 13, 814 (1960). https://doi.org/10.1107/S0365110X60001941

    Article  Google Scholar 

  18. P. A. Filatov, Extended Abstract of Cand. Sci. Dissertation in Physics and Mathematics (MISiS, Moscow, 2008).

  19. P. V. Gureva, N. V. Marchenkov, A. N. Artemev, et al., J. Appl. Crystallogr. 53, 734 (2020). https://doi.org/10.1107/S1600576720005154

    Article  Google Scholar 

  20. https://newpiezo.com/

  21. http://kcsni.nrcki.ru/pages/en/source/index.shtml

  22. P. V. Gur’eva, N. V. Marchenkov, A. N. Artem’ev, et al., Instrum. Exp. Tech. 64 (2), 308 (2021). https://doi.org/10.1134/S0020441221010243

    Article  Google Scholar 

  23. E. E. Vainshtein and M. M. Kakhana, Reference Tables on X-Ray Spectroscopy (Izd-vo AN SSSR, Moscow, 1953) [in Russian].

    Google Scholar 

  24. https://en.wikipedia.org/wiki/Chi-square_distribution

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-32-90136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Gureva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gureva, P.V., Marchenkov, N.V., Kuz’micheva, G.M. et al. Synchrotron Study of the Effect of Tantalum Variation on the Piezoelectric Modulus d11 in Langatate Crystal. Crystallogr. Rep. 67, 845–850 (2022). https://doi.org/10.1134/S1063774522060098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522060098

Navigation