Skip to main content
Log in

New multicell model for describing the atomic structure of La3Ga5SiO14 piezoelectric crystal: Unit cells of different compositions in the same single crystal

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Accurate X-ray diffraction study of langasite (La3Ga5SiO14) single crystal has been performed using the data obtained on a diffractometer equipped with a CCD area detector at 295 and 90.5 K. Within the known La3Ga5SiO14 model, Ga and Si cations jointly occupy the 2d site. A new model of a “multicell” consisting of two different unit cells is proposed. Gallium atoms occupy the 2d site in one of these cells, and silicon atoms occupy this site in the other cell; all other atoms correspondingly coordinate these cations. This structure implements various physical properties exhibited by langasite family crystals. The conclusions are based on processing four data sets obtained with a high resolution (sin θ/λ ≤ 1.35 Å–1), the results reproduced in repeated experiments, and the high relative precision of the study (sp. gr. P321, Z = 1; at 295 K, a = 8.1652(6) Å, c = 5.0958(5) Å, R/wR = 0.68/0.68%, 3927 independent reflections; at 90.5 K, a = 8.1559(4) Å, c = 5.0913(6) Å, R/wR = 0.92/0.93%, 3928 reflections).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Belokoneva and N. V. Belov, Dokl. Akad. Nauk SSSR 260 (6), 1363 (1981).

    Google Scholar 

  2. B. V. Mill’, A. V. Butashin, G. G. Khodzhabagyan, et al., Dokl. Akad. Nauk SSSR 264 (6), 1385 (1982).

    Google Scholar 

  3. A. A. Kaminsky, B. V. Mill’, and S. E. Sarkisov, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian], p. 197.

  4. K. Marty, P. Bordet, V. Simonet, et al., Phys. Rev. B 81, 054416 (2010).

    Article  ADS  Google Scholar 

  5. E. L. Belokoneva, S. Yu. Stefanovich, Yu. V. Pisarevskii, et al., Zh. Neorg. Khim. 45 (11), 1786 (2000).

    Google Scholar 

  6. B. V. Mill’, A. A. Klimenkova, B. A. Maksimov, et al., Crystallogr. Rep. 520 (5), 785 (2007).

    Article  ADS  Google Scholar 

  7. B. A. Maksimov, V. N. Molchanov, B. V. Mill’, et al., Crystallogr. Rep. 50 (5), 751 (2005).

    Article  ADS  Google Scholar 

  8. B. V. Mill and Yu. V. Pisarevsky, Proc. IEEE/EIA Int. Frequency Control Symp., Kansas City, 2000, p. 133.

    Google Scholar 

  9. B. V. Mill’, Kristallografiya 47 (5), 812 (2002).

    ADS  Google Scholar 

  10. A. P. Dudka, Crystallogr. Rep. 61 (2), 187 (2016).

    Article  ADS  Google Scholar 

  11. N. Araki, H. Oshato, K. Kakimoto, et al., J. Eur. Ceram. Soc. 27, 4099 (2007).

    Article  Google Scholar 

  12. A. P. Dudka and V. I. Simonov, Crystallogr. Rep. 56 (6), 980 (2011).

    Article  ADS  Google Scholar 

  13. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 58 (4), 594 (2013).

    Article  ADS  Google Scholar 

  14. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 59 (5), 689 (2014).

    Article  ADS  Google Scholar 

  15. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 56 (3), 443 (2011).

    Article  ADS  Google Scholar 

  16. B. K. Vainshtein, Modern Crystallography, Vol. 1: Symmetry of Crystals. Methods of Structural Crystallography (Nauka, Moscow, 1979) [in Russian].

  17. A. F. Konstantinova, T. G. Golovina, B. V. Nabatov, et al., Crystallogr. Rep. 60 (6), 907 (2015).

    Article  ADS  Google Scholar 

  18. I. S. Lyubutin, P. G. Naumov, B. V. Mill’, et al., Phys. Rev. B 84, 214425 (2011).

    Article  ADS  Google Scholar 

  19. S. A. Pikin and I. S. Lyubutin, Phys. Rev. B 86, 4414 (2012).

    Article  Google Scholar 

  20. S. A. Pikin, I. S. Lyubutin, and A. P. Dudka, Crystallogr. Rep. 60 (5), 729 (2015).

    Article  ADS  Google Scholar 

  21. E. N. Domoroshchina, A. B. Dubovskii, G. M. Kuz’micheva, and G. V. Semenkovich, Neorg. Mater. 41 (5), 1378 (2005).

    Google Scholar 

  22. D. V. Roshchupkin, D. V. Irzhak, E. D. Roshchupkina, and O. A. Buzanov, Crystallogr. Rep. 49 (Suppl. 1), S80 (2004).

    Google Scholar 

  23. O. A. Buzanov, E. V. Zabelina, and N. S. Kozlova, Crystallogr. Rep. 52 (4), 691 (2007).

    Article  ADS  Google Scholar 

  24. N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, et al., Crystallogr. Rep. 61 (2), 275 (2016).

    Article  ADS  Google Scholar 

  25. E. A. Tyunina, I. A. Kaurova, G. M. Kuz’micheva, et al., Materialovedenie, No. 12, 45 (2010).

    Google Scholar 

  26. G. M. Kuz’micheva, E. N. Domoroschina, I. A. Kaurova, et al., Cryst. Res. Technol. 47 (2), 131 (2012).

    Article  Google Scholar 

  27. E. N. Domoroshchina, G. M. Kuz’micheva, and V. B. Rybakov, Perspekt. Mater. 4 (5), 17 (2004).

    Google Scholar 

  28. N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, et al., Bull. Russ. Acad. Sci.: Phys. 78 (11), 1227 (2014).

    Article  Google Scholar 

  29. K. Taylor and O. Kennard, Acta Crystallogr. B 42, 112 (1986).

    Article  Google Scholar 

  30. A. M. Antipin, O. A. Alekseeva, N. I. Sorokina, et al., Acta Crystallogr. B 70, 669 (2014).

    Article  Google Scholar 

  31. T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  32. A. P. Dudka, B. P. Sobolev, and V. I. Simonov, Crystallogr. Rep. 58 (6), 822 (2013).

    Article  ADS  Google Scholar 

  33. A. P. Dudka, I. A. Verin, and E. S. Smirnova, Crystallogr. Rep. 61 (4), 692 (2016).

    Article  ADS  Google Scholar 

  34. Rigaku Oxford Diffraction, 2015, CrysAlisPro Software System, Version 1.171.38.41 (Rigaku, Oxford, UK, 2015).

  35. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007).

    Article  MathSciNet  Google Scholar 

  36. A. P. Dudka, M. Kh. Rabadanov, and A. A. Loshmanov, Kristallografiya 34 (4), 818 (1989).

    Google Scholar 

  37. J. Bohm, E. Chilla, C. Flannery, et al., J. Cryst. Growth 216, 293 (2000).

    Article  ADS  Google Scholar 

  38. A. P. Dudka, Crystallogr. Rep. 50 (6), 1068 (2005).

    Article  ADS  Google Scholar 

  39. A. Dudka, J. Appl. Crystallogr. 43 (6), 1440 (2010).

    Article  Google Scholar 

  40. A. P. Dudka, Crystallogr. Rep. 60 (4), 601 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. P. Dudka, Crystallogr. Rep. 60 (6), 984 (2015).

    Article  ADS  Google Scholar 

  42. P. J. Becker and P. Coppens, Acta Crystallogr. A 30, 129 (1974).

    Article  ADS  Google Scholar 

  43. Page. Y. Le and E. J. Gabe, J. Appl. Crystallogr. 11, 254 (1978).

    Article  Google Scholar 

  44. A. Dudka, J. Appl. Crystallogr. 43, 27 (2010).

    Article  Google Scholar 

  45. A. Dudka, J. Appl. Crystallogr. 41, 83 (2008).

    Article  Google Scholar 

  46. W. C. Hamilton, Acta Crystallogr. 18, 502 (1965).

    Article  Google Scholar 

  47. Z. Su and P. Coppens, Acta Crystallogr. A 54, 646 (1998).

    Article  Google Scholar 

  48. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5) 345 (2014).

    Google Scholar 

  49. K. Brandenburg, Diamond. Ver. 3.1.1999 (Crystal Impact GbR, Bonn, Germany).

  50. A. P. Dudka, Crystallogr. Rep. 47 (1), 152 (2002).

    Article  ADS  Google Scholar 

  51. S. C. Abrahams and E. T. Keve, Acta Crystallogr. A 27, 157 (1971).

    Article  ADS  Google Scholar 

  52. H. Takazawa, S. Ohba, and Y. Saito, Acta Crystallogr. B 44, 580 (1988).

    Article  Google Scholar 

  53. P. I. Kuznetsov, R. L. Stratonovich, and V. I. Tikhonov, Teor. Veroyatn. Ee Primen. 5 (1), 84 (1960).

    Google Scholar 

  54. C. K. Johnson, Acta Crystallogr. A 25, 187 (1969).

    Article  ADS  Google Scholar 

  55. J. E. Dennis, D. M. Gay, and R. E. Welsch, ACM Trans. Math. Software 7 (3), 369 (1981).

    Article  Google Scholar 

  56. K. Robinson, J. V. Gibbs, and P. H. Ribbe, Science 172, 567 (1971).

    Article  ADS  Google Scholar 

  57. A. P. Dudka, Yu. V. Pisarevskii, V. I. Simonov, and B. V. Mill’, Crystallogr. Rep. 55 (5), 748 (2010).

    Article  ADS  Google Scholar 

  58. J. Chen, Y. Zheng, H. Kong, and E. Shi, Appl. Phys. Lett. 89, 012901 (2006).

    Article  ADS  Google Scholar 

  59. B. V. Mill, B. A. Maksimov, Yu. V. Pisarevskii, et al., Crystallogr. Rep. 49 (1), 60 (2004).

    Article  ADS  Google Scholar 

  60. I. S. Lyubutin, P. G. Naumov, and B. V. Mill, Europhys. Lett. 90, 67005 (2010).

    Article  ADS  Google Scholar 

  61. Y. Yoneda, H. Takeda, T. Shiosaki, and J. Mizuki, Jpn. J. Appl. Phys. B 46 (10), 7163 (2007).

    Article  ADS  Google Scholar 

  62. T. Lee, V. I. Baskes, A. C. Lawson, et al., Materials 2, 1040 (2012).

    Article  ADS  Google Scholar 

  63. A. P. Dudka and A. M. Balbashov, Proc. 5th Eur. Conf. Crystal Growth (ECCG5), Bologna, 9–11 September 2015, p. S11.

    Google Scholar 

  64. A. P. Dudka and A. M. Balbashov, Proc. 18th Int. Conf. Crystal Growth and Epitaxy (ICCGE-18), Nagoya, 7–12 August, 2016, p. 36.

    Google Scholar 

  65. A. P. Dudka, Crystallogr. Rep. 62 (2017) (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dudka.

Additional information

Original Russian Text © A.P. Dudka, 2017, published in Kristallografiya, 2017, Vol. 62, No. 2, pp. 202–212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudka, A.P. New multicell model for describing the atomic structure of La3Ga5SiO14 piezoelectric crystal: Unit cells of different compositions in the same single crystal. Crystallogr. Rep. 62, 195–204 (2017). https://doi.org/10.1134/S1063774517020109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517020109

Navigation