Skip to main content
Log in

High-Pressure Neutron Diffraction Study of the Crystal and Magnetic Structure of Materials at the Pulsed Reactor IBR-2: Current Opportunities and Prospects

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The experimental capabilities and results of recent studies of the crystal and magnetic structure of functional materials on the diffractometers DN-12 and DN-6 of upgraded high-flux pulsed reactor IBR-2 in wide ranges of high pressures and temperatures are reviewed. The combination of high neutron flux on a sample, wide-aperture multidetector systems, and focusing devices has made it possible to implement diffraction experiments on samples with record-low volumes under ultrahigh pressures (up to 35 GPa) in the temperature range of 5–300 K. The results of recent studies of the structural and magnetic phase transitions in ferroelectrics, multiferroics, low-dimensional magnets, and other materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. H.-K. Mao, B. Chen, J. Chen, et al., Matter Radiat. Extremes 1, 59 (2016).

    Google Scholar 

  2. Frontiers of High Pressure Research, Ed. by H. D. Hochheimer and R. E. Etters (Elsevier, New York, 2005).

    Google Scholar 

  3. I. A. Kornev, L. Bellaiche, P. Bouvier, et al., Phys. Rev. Lett. 95, 196804 (2005).

    Article  Google Scholar 

  4. I. Orgzall, F. Emmerling, B. Schulz, et al., J. Phys.: Condens. Matter 20, 295206 (2008).

    Google Scholar 

  5. High-Pressure Crystallography, Ed. by A. Katrusiak and P. McMillan (Springer, Netherlands, 2004).

    Google Scholar 

  6. E. Giliolia and L. Ehm, IUCrJ 1, 590 (2014).

    Article  Google Scholar 

  7. D. P. Kozlenko, A. A. Belik, A. V. Belushkin, et al., Phys. Rev. B 84, 094108 (2011).

    Article  Google Scholar 

  8. J. P. S. Walsh and D. E. Freedman, Acc. Chem. Res. 51, 1315 (2018).

    Article  Google Scholar 

  9. Y. Le Godec, A. Courac, and V. L. Solozhenko, J. Appl. Phys. 126, 151102 (2019).

    Article  Google Scholar 

  10. I. Mirebeau, C. R. Phys. 7, 737 (2007).

    Article  Google Scholar 

  11. Y. A. Izyumov, Magnetic Neutron Diffraction (Springer, USA, 1970).

    Google Scholar 

  12. N. Dubrovinskaia, L. Dubrovinsky, N. A. Solopova, et al., Sci. Adv. 2, e1600341 (2016).

    Article  Google Scholar 

  13. V. L. Aksenov and A. M. Balagurov, Usp. Fiz. Nauk. 186, 293 (2016).

    Article  Google Scholar 

  14. M. Guthrie, J. Phys.: Condens. Matter 27, 153201 (2016).

    Google Scholar 

  15. S. Klotz, Techniques in High-Pressure Neutron Scattering (CRC Press, USA, 2016).

    Google Scholar 

  16. D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, and B. N. Savenko, Crystals 8 (8), 331 (2018).

    Article  Google Scholar 

  17. A. V. Belushkin, D. P. Kozlenko, and A. V. Rogachev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 828 (2011).

    Article  Google Scholar 

  18. V. P. Glazkov, I. V. Naumov, V. A. Somenkov, and S. Sh. Shilshtein, Nucl. Instrum. Methods Phys. Res. 264, 367 (1988).

    Article  Google Scholar 

  19. V. P. Glazkov, S. P. Besedin, I. N. Goncharenko, et al., JETP Lett. 47, 763 (1988).

    Google Scholar 

  20. V. A. Somenkov, J. Phys.: Condens. Matter 17, S2991 (2005).

    Google Scholar 

  21. V. P. Glazkov and I. N. Goncharenko, High Pressure Phys. Technol. 1, 56 (1991).

    Google Scholar 

  22. J. M. Besson, R. J. Nelmes, G. Hamel, et al., Physica B 180–181, 907 (1992).

    Article  Google Scholar 

  23. L. G. Khvostantsev, High Temp. High Pressure 16, 171 (1984).

    Google Scholar 

  24. J. S. Loveday, R. J. Nelmes, W. G. Marshall, et al., High Pressure Res. 14, 303 (1996).

    Article  Google Scholar 

  25. C. L. Bull, N. P. Funnell, M. G. Tucker, et al., High Pressure Res. 36, 493 (2016).

    Article  Google Scholar 

  26. H. Arima, T. Hattori, K. Komatsu, et al., J. Phys.: Conf. Ser. 215, 012025 (2010).

    Google Scholar 

  27. R. Iizuka, T. Yagi, H. Gotou, et al., High Pressure Res. 32, 430 (2012).

    Article  Google Scholar 

  28. R. Boehler, J. J. Molaison, and B. Haberl, Rev. Sci. Instrum. 88 (8), 083905 (2017).

    Article  Google Scholar 

  29. S. Klotz, Th. Strässle, G. Rousse, et al., Appl. Phys. Lett. 86, 031917 (2005).

    Article  Google Scholar 

  30. S. Klotz, Th. Strässle, B. Lebert, et al., High Pressure Res. 36, 73 (2016).

    Article  Google Scholar 

  31. Y. Zhao, J. Zhang, H. Xu, et al., Appl. Phys. A 99, 585 (2010).

    Article  Google Scholar 

  32. I. N. Goncharenko, I. Mirebeau, and A. Ochiai, Hyperfine Interact. 128, 225 (2000).

    Article  Google Scholar 

  33. I. N. Goncharenko and I. Mirebeau, Europhys. Lett. 37, 633 (1997).

    Article  Google Scholar 

  34. V. N. Shvetsov, Quantum Beam Sci. 1, 6 (2017).

    Article  Google Scholar 

  35. V. L. Aksenov, A. M. Balagurov, V. P. Glazkov, et al., Physica B 265, 258 (1999).

    Article  Google Scholar 

  36. D. P. Kozlenko, B. N. Savenko, V. P. Glazkov, and V. A. Somenkov, Neutron News 16, 13 (2005).

    Article  Google Scholar 

  37. F. V. Levchanovskiy and S. M. Murashkevich, Proc. XXIV Int. Symposium on Nuclear Electronics and Computing, 2013, Dubna, Russia (Izd-vo JINR, Dubna, 2013), p. 176.

  38. S. A. Kulikov and V. I. Prikhodko, Phys. Part. Nucl. Lett. 47, 702 (2016).

    Article  Google Scholar 

  39. A. N. Chernikov and V. N. Trofimov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 956 (2014).

    Article  Google Scholar 

  40. A. N. Chernikov and A. P. Buzdavin, Phys. Part. Nucl. Lett. 16, 112 (2019).

    Article  Google Scholar 

  41. A. V. Belushkin, S. A. Manoshin, D. P. Kozlenko, and S. E. Kichanov, Nucl. Instrum. Methods Phys. Res. A 892, 48 (2018).

    Article  Google Scholar 

  42. A. V. Belushkin, A. P. Buzdavin, S. I. Veleshki, et al., Phys. Part. Nucl. Lett. 10, 436 (2013).

    Article  Google Scholar 

  43. I. N. Goncharenko, High Pressure Res. 24, 193 (2004).

    Article  Google Scholar 

  44. R. Boehler and K. De Hantsetters, High Pressure Res. 24, 391 (2004).

    Article  Google Scholar 

  45. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).

    Article  Google Scholar 

  46. D. P. Kozlenko and B. N. Savenko, Fiz. Elem. Phys. Part. Nucl. 37, 5 (2006).

    Google Scholar 

  47. E. V. Boldyreva, Acta Crystallogr. B 75, 916 (2019).

    Article  Google Scholar 

  48. D. P. Kozlenko, J. Wasicki, V. P. Glazkov, et al., Crystallogr. Rep. 50 (1), 78 (2004).

    Article  Google Scholar 

  49. S. E. Kichanov, D. P. Kozlenko, J. Wasicki, et al., J. Mol. Struct. 921, 68 (2009).

    Article  Google Scholar 

  50. S. E. Kichanov, D. P. Kozlenko, J. W. Wasicki, et al. Crystallogr. Rep. 52 (3), 447 (2007).

    Article  Google Scholar 

  51. D. P. Kozlenko, S. E. Kichanov, V. I. Voronin, et al., JETP Lett. 82, 501 (2005).

    Google Scholar 

  52. D. P. Kozlenko, T. A. Chan, S. E. Kichanov, et al., JETP Lett. 92, 590 (2010).

    Article  Google Scholar 

  53. M. T. Vu, D. P. Kozlenko, S. E. Kichanov, et al., J. Alloys Compd. 681, 527 (2016).

    Article  Google Scholar 

  54. S. E. Kichanov, D. P. Kozlenko, L. H. Khiem, et al., Chem. Phys. 528, 110541 (2020).

    Article  Google Scholar 

  55. N. M. Belozerova, S. E. Kichanov, Z. Jirák, et al., J. Alloys Compd. 646, 998 (2015).

    Article  Google Scholar 

  56. N. M. Belozerova, S. E. Kichanov, D. P. Kozlenko, et al., IEEE Trans. Magn. 53, 1 (2017).

    Article  Google Scholar 

  57. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  58. A. V. Rutkauskas, D. P. Kozlenko, I. O. Troyanchuk, et al., JETP Lett. 101, 820 (2015).

    Article  Google Scholar 

  59. D. P. Kozlenko, A. V. Rutkauskas, N. T. Dang, et al., JETP Lett. 100, 380 (2014).

    Article  Google Scholar 

  60. N. O. Golosova, D. P. Kozlenko, V. I Voronin, et al. Phys. Solid State 48, 96 (2006).

    Article  Google Scholar 

  61. N. O. Golosova, D. P. Kozlenko, D. Nicheva, et al., J. Magn. Magn. Mater. 508, 166874 (2020).

    Article  Google Scholar 

  62. O. N. Lis, S. E. Kichanov, D. P. Kozlenko, et al., J. Magn. Magn. Mater. 487, 165360 (2019).

    Article  Google Scholar 

  63. N. O. Golosova, D. P. Kozlenko, S. E. Kichanov, et al., J. Magn. Magn. Mater. 494, 165801 (2020).

    Article  Google Scholar 

  64. D. P. Kozlenko, N. T. Dang, N. O. Golosova, et al., Phys. Rev. B 98, 134435 (2018).

    Article  Google Scholar 

  65. D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, et al., Phys. Rev. B 89, 174107 (2014).

    Article  Google Scholar 

  66. D. P. Kozlenko, N. T. Dang, S. E. Kichanov, et al., Phys. Rev. B 92, 134409 (2015).

    Article  Google Scholar 

  67. N. T. Dang, D. P. Kozlenko, S. E. Kichanov, et al., J. Electron. Mater. 46, 3373 (2017).

    Article  Google Scholar 

  68. E. Burzo, P. Vlaic, D. P. Kozlenko, et al., J. Alloys Compd. 551, 702 (2013).

    Article  Google Scholar 

  69. E. Burzo, P. Vlaic, D. P. Kozlenko, et al., J. Alloys Compd. 584, 393 (2014).

    Article  Google Scholar 

  70. E. Burzo, P. Vlaic, D. P. Kozlenko, et al., J. Alloys Compd. 724, 1184 (2017).

    Article  Google Scholar 

  71. D. P. Kozlenko, E. Burzo, P. Vlaic, et al., Sci. Rep. 5, 8620 (2015).

    Article  Google Scholar 

  72. D. P. Kozlenko, L. S. Dubrovinsky, S. E. Kichanov, et al., Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  73. N. O. Golosova, D. P. Kozlenko, S. E. Kichanov, et al., J. Alloys Compd. 722, 593 (2017).

    Article  Google Scholar 

  74. L. Bayarjargal and B. Winkler, Appl. Phys. Lett. 102, 182403 (2013).

    Article  Google Scholar 

  75. R. A. Sadykov, L. Gruzinp, and V. A. Suhoparov, High Pressure Res. 14, 199 (1995).

    Article  Google Scholar 

  76. J. M. Besson, Ph. Pruzan, S. Klotz, et al., AIP Conf. Proc. 309, 409 (1994).

    Article  Google Scholar 

  77. D. A. Salamatin, V. A. Sidorov, S. E. Kichanov, et al., J. Alloys Compd. 755, 10 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.P. Glazkov (NRC KI) for the long-term fruitful cooperation concerning the design of DN-12 and DN-6 facilities and development of high-pressure technology for neutron experiments.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-52-45009_IND_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kichanov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlenko, D.P., Kichanov, S.E., Lukin, E.V. et al. High-Pressure Neutron Diffraction Study of the Crystal and Magnetic Structure of Materials at the Pulsed Reactor IBR-2: Current Opportunities and Prospects. Crystallogr. Rep. 66, 303–313 (2021). https://doi.org/10.1134/S1063774521020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521020073

Navigation