Skip to main content
Log in

Crystal Structure of Urate Oxidase from Bacillus Subtilis 168

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Urate oxidase catalyzes the oxidative degradation of uric acid to allantoin via peroxide formation by a radical recombination mechanism. Here the crystal structure of urate oxidase (residues 4-310) from Bacillus subtilis 168 (BsUOX) was solved at 2.6 Å resolution. Both crystal structure and small angle X-ray scattering data confirmed that the BsUOX adopts a tetrameric conformation. Comparative analysis of BsUOX structure alignment with crystal structure of urate oxidase complexed with uric acid from Aspergillus flavus (PDB entry 4D12) showed some conserved BsUOX amino acid residues, Thr69, Ser243, Gln245, and Asn271, in the active site region that can potentially bind uric acid. Residues Ile244 and Gln299 are also predicted to interact with the uric acid via hydrophobic interactions but needs further confirmation. This work will be helpful for further functional and biochemical studies of the enzyme for future drug design and development against gout and hyperuricemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Oda, Y. Satta, O. Takenaka, and N. Takahata, Mol. Biol. Evol. 19, 640 (2002).

    Article  Google Scholar 

  2. F. Ghaemi-Oskouie and Y. Shi, Curr. Rheumatol. Rep. 13, 160 (2011).

    Article  Google Scholar 

  3. F. Martinon, Curr. Rheumatol. Rep. 12, 135 (2010).

    Article  Google Scholar 

  4. X. Liu, M. Wen, J. Li, et al., Appl. Microbiol. Biotechnol. 92, 529 (2011).

    Article  Google Scholar 

  5. Z. Chen, Z. Wang, X. He, et al., Appl. Microbiol. Biotechnol. 79, 545 (2008).

    Article  Google Scholar 

  6. X. W. Wu, C. C. Lee, D. M. Muzny, and C. T. Caskey, Proc. Natl. Acad. Sci. USA 86, 9412 (1989).

    Article  ADS  Google Scholar 

  7. X. M. Wu, D. M. Muzny, C. C. Lee, and C. T. Caskey, J. Mol. Evol. 34, 78 (1992).

    Article  ADS  Google Scholar 

  8. J. T. Kratzer, M. A. Lanaspa, M. N. Murphy, et al., Proc. Natl. Acad. Sci. USA 111, 3763 (2014).

    Article  ADS  Google Scholar 

  9. F. Dabbagh, M. B. Ghoshoon, S. Hemmati, et al., Curr. Pharm. Biotechnol. 17, 141 (2015).

    Article  Google Scholar 

  10. S. Amaro, D. Soy, V. Obach, et al., Stroke 38, 2173 (2007).

    Article  Google Scholar 

  11. E. W. Kellogg and I. Fridovich, J. Biol. Chem. 252, 6721 (1977).

    Google Scholar 

  12. A. K. Mandal and D. B. Mount, Annu. Rev. Physiol. 77, 323 (2015).

    Article  Google Scholar 

  13. L. X. Chen and H. R. Schumacher, Best Pract. Res. Clin. Rheumatol. 20, 673 (2006).

    Article  Google Scholar 

  14. Y. Y. Sautin and R. J. Johnson, Nucleos. Nucleot. Nucleic Acids 27, 608 (2008).

    Article  Google Scholar 

  15. S. E. Sattui and A. L. Gaffo, Ther. Adv. Musculoskelet. Dis. 8, 145 (2016).

    Article  Google Scholar 

  16. W. M. Gentry, M. P. Dotson, B. S. Williams, et al., Am. J. Health-Syst. Pharm. 71, 722 (2014).

    Article  Google Scholar 

  17. R. Garg, H. R. Sayles, F. Yu, et al., Arthritis Care Res. (Hoboken) 65, 571 (2013).

    Article  Google Scholar 

  18. S. Patel, A. Le, and S. Gascon, Am. J. Health-Syst. Pharm. 69, 1015 (2012).

    Article  Google Scholar 

  19. J. Feng, L. Wang, H. Liu, et al., Appl. Microbiol. Biotechnol. 99, 7973 (2015).

    Article  Google Scholar 

  20. W. Li, S. Xu, B. Zhang, et al., PLoS One 12, e0177877 (2017).

    Article  Google Scholar 

  21. J. Li, Z. Chen, L. Hou, et al., Protein Expr. Purif. 49, 55 (2006).

    Article  Google Scholar 

  22. M. I. Shaaban, E. Abdelmegeed, and Y. M. Ali, J. Microbiol. Biotechnol. 25, 887 (2015).

    Article  Google Scholar 

  23. P. Pfrimer, L. M. de Moraes, A. S. Galdino, et al., J. Biomed. Biotechnol. 2010, 674908 (2010).

    Google Scholar 

  24. A. Vagin and A. Teplyakov, Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 22 (2010).

    Article  Google Scholar 

  25. A. A. Lebedev, A. A. Vagin, and G. N. Murshudov, Acta Crystallogr., Sect. D: Biol. Crystallogr. 64, 33 (2008).

    Article  Google Scholar 

  26. T. Hibi, Y. Hayashi, H. Fukada, et al., Biochem. 53, 3879 (2014).

    Article  Google Scholar 

  27. G. N. Murshudov, P. Skubak, A. A. Lebedev, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 67, 355 (2011).

    Article  Google Scholar 

  28. P. Emsley and K. Cowtan, Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2126 (2004).

    Article  Google Scholar 

  29. P. Emsley, B. Lohkamp, W.G. Scott, and K. Cowtan, Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 486 (2010).

    Article  Google Scholar 

  30. W. L. DeLano, PyMOL (http://www.pymol.org, 2002).

  31. D. Svergun, C. Barberato, and M. H. J Koch, J. App. Crystallogr. 28, 768 (1995).

    Article  Google Scholar 

  32. N. Colloc’h, M. el Hajji, B. Bachet, et al., Nat. Struct. Biol. 4, 947 (1997).

    Article  Google Scholar 

  33. R. D. Imhoff, N. P. Power, M. J. Borrok, and P. A. Tipton, Biochem. 42, 4094 (2003).

    Article  Google Scholar 

  34. S. Bui, D. von Stetten, P. G. Jambrina, et al., Angew. Chem. Int. Ed. Engl. 53, 13710 (2014).

    Article  Google Scholar 

  35. P. Retailleau, N. Colloc’h, D. Vivares, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 453 (2004).

    Article  Google Scholar 

  36. L. Holm and P. Rosenstrom, Nucleic Acids Res. 38, W545 (2010).

    Article  Google Scholar 

  37. X. Robert and P. Gouet, Nucleic Acids Res. 42, W320 (2014).

    Article  Google Scholar 

  38. T. Hibi, A. Kume, A. Kawamura, et al., Biochemistry 55, 724 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the staff of Beam line BL19U1 at SSRF for assistance in data collection. This work was financially supported by the grants from the Ministry of science and technology of China (2016YFA0500700), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB10, XDB08010101), and the National Natural Science Foundation of China (grant 31330018, 31770805, and 91540103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Jiang or Q. Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayab, A., Moududee, S.A., Shi, Y. et al. Crystal Structure of Urate Oxidase from Bacillus Subtilis 168. Crystallogr. Rep. 64, 1126–1133 (2019). https://doi.org/10.1134/S1063774519070149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519070149

Navigation