Skip to main content
Log in

Anisotropy of Ionic Conductivity of TbF3 Crystals

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Temperature measurements (in the range of 375–830 K) of the ionic conductivity of terbium trifluoride single crystals (structure type β-YF3) along three unit-cell crystallographic axes (a, b, and c) have been performed. It is found that TbF3 crystals (orthorhombic system, sp. gr. Pnma) have a weak anisotropy of electrical conductivity: σ||b||a = σ||b||c ≈ 2. The conductivity along the b axis is σ||b = 8 × 10–6 S/cm at 500 K. The anisotropy of fluorine-ion conductivity in rare-earth fluorides with β-YF3, LaF3 (tysonite), and β-BaTm2F8 structures is discussed in the contest of the specific features of their atomic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. V. Chadwick, D. S. Hope, G. Jaroszkiewicz, and J. H. Strange, Fast Ion Transport in Solids, Ed. by P. Vashishta (Elsevier North-Holland, Amsterdam, 1979), p. 683.

    Google Scholar 

  2. J. Schoonman, G. Oversluizen, and K. E. D. Wapenaar, Solid State Ionics 1, 211 (1980).

    Article  Google Scholar 

  3. C. Hoff, H. D. Wiemhofer, O. Glumov, and I. V. Murin, Solid State Ionics 101–103, 445 (1997).

    Article  Google Scholar 

  4. V. V. Sinitsyn, O. Lips, A. F. Privalov, et al., J. Phys. Chem. Solids 64, 1201 (2003).

    Article  ADS  Google Scholar 

  5. A. Roos, M. Buijs, and J. Schoonman, Radiat. Eff. 75, 47 (1983).

    Article  Google Scholar 

  6. A. Roos, F. C. M. van de Pol, R. Keim, and J. Schoonman, Solid State Ionics 13, 191 (1984).

    Article  Google Scholar 

  7. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 43 (4), 420 (2007).

    Google Scholar 

  8. N. I. Sorokin, B. P. Sobolev, and M. W. Breiter, Phys. Solid State 44 (2), 282 (2002).

    Article  ADS  Google Scholar 

  9. V. Trnovcova, P. P. Fedorov, M. D. Valkovskii, et al., Ionics 3, 313 (1997).

    Article  Google Scholar 

  10. V. Trnovcova, P. P. Fedorov, A. A. Bystrova, et al., Solid State Ionics 106, 301 (1998).

    Article  Google Scholar 

  11. U. V. Valiev, D. N. Karimov, G. W. Burdick, et al., J. Appl. Phys. 121 (24), 243105 (2017).

    Article  ADS  Google Scholar 

  12. Ph. W. Metz, D. T. Marzahl, A. Majid, and Ch. Krankel, Laser Photonics Rev. 10 (2), 335 (2016).

    Article  ADS  Google Scholar 

  13. D. N. Karimov, D. S. Lisovenko, N. L. Sizova, and B. P. Sobolev, Crystallogr. Rep. 63 (1), 96 (2018).

    Article  ADS  Google Scholar 

  14. A. Zalkin and D. H. Templeton, J. Am. Chem. Soc. 75 (10), 2453 (1953).

    Article  Google Scholar 

  15. O. Greis and T. Petzel, Z. Anorgan. Allgem. Chem. 403 (1), 1 (1974).

    Google Scholar 

  16. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Fiz. Tverd. Tela 25, 1748 (1983).

    Google Scholar 

  17. V. Trnovtsova, P. P. Fedorov, B. P. Sobolev, et al., Crystallogr. Rep. 41 (4), 694 (1996).

    ADS  Google Scholar 

  18. A. I. Livshits, V. M. Buznik, P. P. Fedorov, and B. P. Sobolev, Nuclear Magnetic Resonance in Crystals (IF SO AN SSSR, Krasnoyarsk, 1978) [in Russian], p. 90.

    Google Scholar 

  19. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Institute of Crystallography (Moscow) and Institut d’Estudis Catalans, Barcelona, 2000).

  20. L. S. Garashina, B. P. Sobolev, V. B. Aleksandrov, and Yu. S. Vishnyakov, Kristallografiya 25 (2), 294 (1980).

    Google Scholar 

  21. A. Zalkin and D. H. Templeton, J. Am. Chem. Soc. 75, 2453 (1953).

    Article  Google Scholar 

  22. O. Greis and M. S. R. Cader, Thermochim. Acta 87, 145 (1985).

    Article  Google Scholar 

  23. M. Mansmann, Z. Kristallogr. 122 (5–6), 375 (1965).

    Article  Google Scholar 

  24. K. Schlyter, Ark. Kemi. 5 (1), 73 (1953).

    Google Scholar 

  25. L. P. Otroshchenko, V. B. Aleksandrov, B. A. Maksimov, et al., Kristallografiya 30 (4), 518 (1985).

    Google Scholar 

  26. N. B. Bolotina, T. S. Chernaya, A. I. Kalyukanov, et al., Crystallogr. Rep. 60 (3), 346 (2015).

    Article  ADS  Google Scholar 

  27. L. S. Garashina, R. M. Zakalyukin, E. A. Krivandina, et al., Proc. II Nat. Crystallochemical Conf., Chernogolovka, 2000, p. 163.

  28. V. Trnovcova, L. S. Garashina, A. Skubla, et al., Solid State Ionics 157, 195 (2003).

    Article  Google Scholar 

  29. O. E. Izotova and V. B. Aleksandrov, Dokl. Akad. Nauk SSSR, 192, 1037 (1970).

    Google Scholar 

  30. N. I. Sorokin, B. P. Sobolev, and M. W. Breiter, Elektrokhimiya 38 (5), 585 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Karimov, D.N. & Sobolev, B.P. Anisotropy of Ionic Conductivity of TbF3 Crystals. Crystallogr. Rep. 64, 621–625 (2019). https://doi.org/10.1134/S1063774519040217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519040217

Navigation