Skip to main content
Log in

Nonstoichiometry in Inorganic Fluorides. IV: The Initial Stage of Anionic Nonstoichiometry in RF3 (R = Y, La, Ln)

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The anionic nonstoichiometry in inorganic fluorides is at result of substitution of F1– for O2– in the anionic sublattice. All families of fluorides exhibit the initial stage of anionic nonstoichiometry (ISAN), which was previously studied for trifluorides of rare-earth elements (REEs), RF3. Partial substitution of F1– for O2– in RF3 occurs in reactions with H2O vapor upon heating (pyrohydrolysis), exchange reactions of RF3 and R2O3 in melts, hydrothermal solutions, solid phase, and during mechanochemical synthesis. The ISAN is based on the formation of RF3 – 2xOx oxofluorides, the type and structure of which depend on the crystalline RF3 forms. Congruently melting tys-RF3 – 2xOx compounds are formed based on the tysonite forms tys-RF3 (R = La–Gd, the LaF3 type). Berthollide phases ~tys-RF3 – 2xOx, which are isostructural to the above-mentioned phases and melts incongruently above the corresponding RF3 compounds, are formed with R = Tb–Ho. The effect of stabilization of tys-RF3 – 2xOx when moving up the temperature scale (+ΔTfus) changes nonmonotonically along the REE series, exhibiting a maximum of ~100°C in the range of Gd–Tb. There are no F1– → O2– substitutions in the β-RF3 forms (R = Er–Lu, Y) of the β-YF3 type. The α-RF3 – 2xOx phases of the α-YF3 (α-UO3) type melt incongruently and decompose at high temperatures. The ISAN products in RF3 may serve as sources of new congruently melting fluorine–oxygen materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. P. Sobolev, Crystallogr. Rep. 57 (3), 434 (2012).

    Article  ADS  Google Scholar 

  2. B. P. Sobolev and N. I. Sorokin, Crystallogr. Rep. 59 (6), 807 (2014).

    Article  ADS  Google Scholar 

  3. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Institut d’Estudis Catalans, Barcelona, 2000).

  4. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institut d’Estudis Catalans, Barcelona, 2001).

  5. B. P. Sobolev, Crystallogr. Rep. 65 (5), 678 (2020).

    Article  ADS  Google Scholar 

  6. B. P. Sobolev, P. P. Fedorov, D. V. Steinberg, et al., J. Solid State Chem. 17 (2), 191 (1976).

    Article  ADS  Google Scholar 

  7. B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, J. Solid State Chem. 17 (2), 201 (1976).

    Article  ADS  Google Scholar 

  8. I. M. Ranieri, S. L. Baldochi, and D. Klimm, J. Solid State Chem. 181, 1070 (2008).

    Article  ADS  Google Scholar 

  9. B. P. Sobolev, P. P. Fedorov, A. K. Galkin, et al., Growth of Crystals (Consultants Bureau, New York, 1980), Vol. 13, p. 229.

    Google Scholar 

  10. P. P. Fedorov, Mater. Res. Bull. 47, 2700 (2012).

    Article  Google Scholar 

  11. J. C. Warf, W. D. Cline, and R. D. Tevebaugh, Anal. Chem. 26 (2), 2342 (1954).

    Article  Google Scholar 

  12. C. V. Banks, K. E. Burke, and J. W. O’Lauglin, Anal. Chim. Acta 19 (3), 239 (1958).

    Article  Google Scholar 

  13. L. R. Batsanova, Usp. Khim. 40 (6), 945 (1971).

    Article  Google Scholar 

  14. W. H. Zachariasen, Acta Crystallogr. 4 (2), 231 (1951).

    Article  Google Scholar 

  15. G. Garton and B. M. Wanklyn, J. Mater. Sci. 3 (4), 395 (1968).

    Article  ADS  Google Scholar 

  16. V. V. Osiko, A. A. Sobol’, M. I. Timoshechkin, et al., Proceeddings of FIAN (Nauka, Moscow, 1972), Vol. 60, p. 71 [in Russian].

    Google Scholar 

  17. J. Lee, Q. Zhang, and F. Saito, J. Am. Ceram. Soc. 84, 863 (2001).

    Article  Google Scholar 

  18. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Crystallogr. Rep. 53 (5), 868 (2008).

    Article  ADS  Google Scholar 

  19. M. A. Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).

    Article  Google Scholar 

  20. O. Greis and J. M. Haschke, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gscheidner and L. R. Eyring, (North-Holland, Amsterdam, 1982), Vol. 5, Ch. 45, p. 387, p. 387.

    Google Scholar 

  21. F. H. Spedding and D. C. Henderson, J. Chem. Phys. 54 (6), 2476 (1971).

    Article  ADS  Google Scholar 

  22. F. H. Spedding, B. J. Beaudry, D. C. Henderson, and J. Moorman, J. Chem. Phys. 60 (4), 1578 (1974).

    Article  ADS  Google Scholar 

  23. O. Greis and M. S. R. Cader, Thermochim. Acta 87 (1), 145 (1985).

    Article  Google Scholar 

  24. R. E. Thoma and G. D. Brunton, Inorg. Chem. 5 (11), 1937 (1966).

    Article  Google Scholar 

  25. O. N. Carlson and F. A. Schmidt, The Rare Earths, Ed. by F. H. Spedding and A. H. Daane (Wiley, New York, 1961), Ch. 6, p. 77.

    Google Scholar 

  26. R. C. Pastor and M. Robinson, Mat. Res. Bull. 9 (5), 569 (1974).

    Article  Google Scholar 

  27. H. A. Friedman, G. M. Hebert, and R. E. Thoma, ORNL-Report-3373, Contract No. W-7405-eng-26 (1963).

  28. R. E. Thoma, C. F. Weaver, H. A. Friedman, et al., J. Phys. Chem. 65 (7), 1096 (1961).

    Article  Google Scholar 

  29. R. E. Thoma, G. D. Brunton, R. A. Penneman, et al., Inorg. Chem. 9 (5), 1096 (1970).

    Article  Google Scholar 

  30. R. E. Thoma, Rev. Chim. Miner. 10 (1–2), 363 (1973).

    Google Scholar 

  31. R. E. Thoma, G. M. Herbert, H. Insley, et al., Inorg. Chem. 5 (2), 1005 (1966).

    Google Scholar 

  32. R. E. Thoma, H. Insley, and G. M. Hebert, Inorg. Chem. 5 (7), 1222 (1966).

    Article  Google Scholar 

  33. C. J. Barton, L. O. Gilpatrick, and H. Insley, J. Inorg. Nucl. Chem. 36 (6), 1271 (1974).

    Article  Google Scholar 

  34. C. J. Barton, L. O. Gilpatrick, G. D. Brunton, et al., J. Inorg. Nucl. Chem. 33 (2), 53 (1971).

    Google Scholar 

  35. C. J. Barton, M. A. Bredig, L. O. Gilpatric, and J. A. Fredricksen, J. Inorg. Nucl. Chem. 9 (2), 307 (1970).

    Article  Google Scholar 

  36. Kh. S. Bagdasarov, P. B. Kalinin, Ya. E. Lapsker, et al., Zavod. Lab. 39, 494 (1973).

    Google Scholar 

  37. F. H. Spedding, B. Sanden, and B. J. Beaudry, J. Less Common Met. 31, 1 (1973).

    Article  Google Scholar 

  38. E. G. Ippolitov and A. G. Maklachkov, Izv. Akad. Nauk SSSR, Neorg. Mater. 6 (1), 146 (1970).

    Google Scholar 

  39. B. V. Zhigarnovskii and E. G. Ippolitov, Izv. Akad. Nauk SSSR, Neorg. Mater. 6 (9), 1598 (1970).

    Google Scholar 

  40. V. A. Gorbulev, P. P. Fedorov, and B. P. Sobolev, J. Less-Common Met. 76, 55 (1980).

    Article  Google Scholar 

  41. V. G. Vasil’chenko, A. V. Konoplyannikov, S. L. Kosmatov, et al., Prib. Tekh. Eksp., No. 3, 198 (1991).

  42. A. De Kozak, M. Samouel, and A. Chretien, Rev. Chim. Miner. 10 (1), 259 (1973).

    Google Scholar 

  43. M. Mansmann, Z. Kristallogr. 122 (5/6), 375 (1965).

    Article  Google Scholar 

  44. B. P. Sobolev and K. B. Seiranyan, Sov. Phys. Crystallogr. 20 (4), 467 (1975).

    Google Scholar 

  45. P. P. Fedorov and B. P. Sobolev, Sov. Phys. Crystallogr. 20 (5), 584 (1975).

    Google Scholar 

  46. B. P. Sobolev and N. L. Tkachenko, Sov. Phys. Crystallogr. 20, 728 (1975).

    Google Scholar 

  47. B. P. Sobolev and P. P. Fedorov, Kristallografiya 18 (3), 624 (1973).

    Google Scholar 

  48. G. A. Bandurkin, B. F. Dzhurinskii, and I. V. Tannaev, Dokl. Akad. Nauk SSSR, 168 (6), 1315 (1966).

    Google Scholar 

  49. A. De Kozak, M. Samouel, and A. Erb, Rev. Chim. Miner. 17, 440 (1980).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to N.I. Sorokin and D.N. Karimov for fruitful discussions and to E.A. Krivandina and Z.I. Zhmurova for supplying crystals for study.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Sobolev.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, B.P. Nonstoichiometry in Inorganic Fluorides. IV: The Initial Stage of Anionic Nonstoichiometry in RF3 (R = Y, La, Ln). Crystallogr. Rep. 66, 349–360 (2021). https://doi.org/10.1134/S1063774521030238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521030238

Navigation