Skip to main content
Log in

Dual nature of the orientational effect of ultrasound on liquid crystals

  • Liquid Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The new model of thresholdless distortion of the orientational structure in a homeotropic layer of nematic liquid crystal with free ends in ultrasonic field has been experimentally substantiated for the first time. The model is constructed within the concepts of nonequilibrium thermodynamics and statistical hydrodynamics of liquid crystals for the frequency range in which the elastic and viscous wavelengths are, respectively, longer and shorter than the layer thickness. The main regularities of the phenomenon, which relate the conditional effect threshold to the ultrasonic frequency and layer thickness, have been established based on the experimental data for (20–150)-μm-thick layers in the frequency range of 0.1–9 MHz. These data are compared with the results of numerical calculations, performed taking into account two mechanisms of liquid crystal structure distortion (convective and nonlinear relaxation ones).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Liquid Crystals, Ed. by D. Demus (Wiley-VCH, Weinheim, 1998).

  2. O. Kapustina, J. Acoust. Soc. Am. 123, 3279 (2008).

    Article  ADS  Google Scholar 

  3. O. A. Kapustina, Kristallografiya 59 (5), 703 (2014) Crystallogr. Rep. 59 (5), 635 (2014).

    Google Scholar 

  4. A. P. Kapustin and O. A. Kapustina, Acoustics of Liquid Crystals (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  5. L. M. Dmitriev and A. P. Kapustin, Kristallografiya, No. 7, 332 (1962).

    Google Scholar 

  6. P.-G. de Gennes, The Physics of Liquid Crystals (Claredon Press, Oxford, 1974).

    MATH  Google Scholar 

  7. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  8. E. N. Kozhevnikov and Ya. V. Kucherenko, Acoust. Phys. 52, 691 (2006).

    Article  ADS  Google Scholar 

  9. O. A. Kapustina, E. N. Kozhevnikov, and G. N. Yakovenko, Zh. Eksp. Teor. Fiz. 87, 849 (1984).

    Google Scholar 

  10. E. N. Kozhevnikov, Akust. Zh. 27, 533 (1981).

    Google Scholar 

  11. E. I. Zhukovskaya, E. N. Kozhevnikov, and V. M. Podol’skii, Zh. Eksp. Teor. Fiz. 83, 207 (1982).

    Google Scholar 

  12. E. N. Kozhevnikov, Zh. Eksp. Teor. Fiz. 82, 161 (1982).

    Google Scholar 

  13. E. N. Kozhevnikov, Akust. Zh. 28, 136 (1982).

    Google Scholar 

  14. N. K. Gus’kov and E. N. Kozhevnikov, Akust. Zh. 29, 38 (1983).

    Google Scholar 

  15. Yu. V. Bocharov and O. A. Kapustina, Acoust. Phys. 45, 408 (1999).

    ADS  Google Scholar 

  16. E. N. Kozhevnikov, Acoust. Phys. 51, 688 (2005).

    Article  ADS  Google Scholar 

  17. E. N. Kozhevnikov, Acoust. Phys. 56, 24 (2010).

    Article  ADS  Google Scholar 

  18. A. N. Semenov, Zh. Eksp. Teor. Fiz. 85, 549 (1983).

    Google Scholar 

  19. V. Osipov and E. Terentjev, Phys. Lett. A 134 (5), 301 (1989).

    Article  ADS  Google Scholar 

  20. V. I. Stepanov, On the Statistical Theory of Nematic Liquid Crystals (Ural Research Center, Sverdlovsk, 1982) [in Russian].

    Google Scholar 

  21. E. N. Kozhevnikov, Izv. Samarskogo Gos. Univ., Ser. Mekh. 2, 1 (2008).

    Google Scholar 

  22. E. N. Kozhevnikov, Ultrasound and Thermodynamic Properties of Materials (Izd-vo Gos. Pedagog. Inst., Kursk, 2008), Vol. 36, p. 172 [in Russian].

    Google Scholar 

  23. E. N. Kozhevnikov, Kristallografiya 55 (6), 1261 (2010).

    Google Scholar 

  24. E. N. Kozhevnikov, Vestn. Samarskogo Gos. Univ. 2 (4), 142 (2010).

    Google Scholar 

  25. Ch. Sripaipan, C. F. Hayes, and G. T. Fang, Phys. Rev. A 15, 1297 (1977).

    Article  ADS  Google Scholar 

  26. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969).

    Google Scholar 

  27. O. A. Kapustina, Crystallogr. Rep. 54 (4), 619 (2009).

    Article  ADS  Google Scholar 

  28. D. I. Anikeev, Yu. V. Bocharov, and A. D. Vuzhva, Liq. Cryst. 6, 593 (1989).

    Article  Google Scholar 

  29. D. I. Anikeev, Yu. V. Bocharov, and A. D. Vuzhva, Pis’ma Zh. Eksp. Teor. Fiz. 58, 1554 (1988).

    Google Scholar 

  30. L. Bergmann, Ultrasound (Hurzel Verlag, Stuttgart, 1954).

    Google Scholar 

  31. V. I. Domarkas and R. I. Kazhis, Piezoelectric Transducers for Control and Measurements (Mintas, Vilnus, 1975) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kapustina.

Additional information

Original Russian Text © O.A. Kapustina, 2017, published in Kristallografiya, 2017, Vol. 62, No. 5, pp. 774–782.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustina, O.A. Dual nature of the orientational effect of ultrasound on liquid crystals. Crystallogr. Rep. 62, 745–752 (2017). https://doi.org/10.1134/S1063774517050091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517050091

Navigation