Skip to main content
Log in

Acoustical analog of the Fréedericksz transition in liquid crystals

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A nonlinear relaxation model describing thresholdlike variation in the symmetry of a homeotropic orientational structure of a nematic liquid crystal (NLC) layer in an ultrasonic wave field has been constructed in the nonlinear hydrodynamics framework based on a molecular micromodel representing all processes in the mesophase proceeding from the behavior of a separate LC molecule. The relationship between the threshold characteristics and the ultrasound frequency, NLC mesophase layer thickness and material parameters, temperature, and parameters of the molecular micromodel is determined. The results of calculations for the frequency range containing the relaxation frequency of the NLC orientational order parameter are compared to the obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kapustina, J. Acoust. Soc. Am. 123, 3279 (2008).

    Article  ADS  Google Scholar 

  2. O. A. Kapustina, Crystallogr. Rep. 59 (5), 735 (2014).

    Article  Google Scholar 

  3. I. A. Chaban, Sov. Phys. Acoust. 25, 67 (1979).

    Google Scholar 

  4. E. N. Kozhevnikov, Sov. Phys. Acoust. 26, 488 (1980).

    Google Scholar 

  5. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  6. E. N. Kozhevnikov, Acoust. Phys. 48 (6), 687 (2002).

    Article  ADS  Google Scholar 

  7. A. N. Semenov, Sov. Phys. JETP 85 (2), 321 (1983).

    Google Scholar 

  8. V. Osipov and E. Terentjev, Phys. Lett. A 134, 301 (1989).

    Article  ADS  Google Scholar 

  9. V. I. Stepanov, To the Statistical Theory of Nematic Liquid Crystals (Ural Scientific Center of the Academy of Sciences of the Soviet Union, Sverdlovsk, 1982), p. 39 [in Russian].

    Google Scholar 

  10. E. N. Kozhevnikov, Acoust. Phys. 40, 369 (1994).

    ADS  Google Scholar 

  11. E. N. Kozhevnikov, Doctoral (Phys.–Math.) Dissertation (Perm State University, Perm, 1998), p. 258.

    Google Scholar 

  12. E. N. Kozhevnikov, Acoust. Phys. 40, 544 (1994).

    ADS  Google Scholar 

  13. E. N. Kozhevnikov, Acoust. Phys. 42, 705 (1996).

    ADS  Google Scholar 

  14. E. N. Kozhevnikov, Izv. Samarskogo Gos. Univ., Ser. Mekh., No. 2, 1 (2008).

    Google Scholar 

  15. N. A. Tikhomirova, L. K. Vistin’, and V. N. Nosov, Sov. Phys. Crystallogr. 17 (5), 878 (1972).

    Google Scholar 

  16. D. Eden, C. W. Garland, and R. C. Williamson, J. Chem. Soc. 58, 1861 (1973).

    ADS  Google Scholar 

  17. A. S. Sonin, Lectures on Liquid Crystals (Moscow State University, Moscow, 1974), p. 122 [in Russian].

    Google Scholar 

  18. J. S. Lee, S. L. Golub, and G. H. Brown, J. Chem. Soc. 76, 2409 (1972).

    Google Scholar 

  19. V. I. Domarkas and R. I. Kazhis, Controlling and Measuring Piezoelectric Transducers (MINTAS, Vilnius, Lithuanian SSR, 1975) [in Russian].

    Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1970; Nauka, Moscow, 1986).

    Google Scholar 

  21. C. A. Castro, A. Hikata, and C. Elbaum, Phys. Rev. A: At., Mol., Opt. Phys. 17, 353 (1979).

    Article  ADS  Google Scholar 

  22. G. C. Bacri, J. Phys. (Paris) 35, 601 (1974).

    Article  Google Scholar 

  23. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach, London, 1991).

    Google Scholar 

  24. L. Bergmann, Der Ultraschall und seine Anwendung in Wissenschaft und Technik (S. Hirzel, Stuttgart, 1954; Mir, Moscow, 1954) [in German and in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kapustina.

Additional information

Original Russian Text © O.A. Kapustina, E.N. Kozhevnikov, E.K. Negazina, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 1031–1038.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustina, O.A., Kozhevnikov, E.N. & Negazina, E.K. Acoustical analog of the Fréedericksz transition in liquid crystals. J. Exp. Theor. Phys. 121, 902–908 (2015). https://doi.org/10.1134/S1063776115110151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110151

Keywords

Navigation