Skip to main content
Log in

Non-isothermal crystallization kinetics of Fe2O3–CaO–SiO2 glass containing nucleation agent P2O5/TiO2

  • Nanomaterials, Ceramics
  • Published:
Crystallography Reports Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2017

Abstract

Fe2O3–CaO–SiO2 glass ceramics containing nucleation agent P2O5/TiO2 were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe2O3–CaO–SiO2 glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe2O3–CaO–SiO2 glass, f(α) = 2.3(1–α)[–ln(1–α)]0.57, was also obtained. The addition of nucleation agent P2O5/TiO2 could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. K. Lee, S. B. Lee, Y. U. Kim, et al., Mater. Sci. 38, 4221 (2003).

    Article  ADS  Google Scholar 

  2. M. Miho, Lab. Invest. 23, 176 (2004).

    Google Scholar 

  3. M. Akihiko and K. Katsuyuki, Clin. Exp. Metastasis 24, 191 (2007).

    Article  Google Scholar 

  4. Y. Y. Wang, B. Li, and Y. Y. Wang, Appl. Mech. Mater. 624, 114 (2014).

    Article  ADS  Google Scholar 

  5. M. Baikousi, S. Agathopoulos, and I. Panagiotopoulos, J. Sol-Gel Sci. Tech. 47, 95 (2008).

    Article  Google Scholar 

  6. M. Kamal, I. K. Battisha, and M. A. Salem, J. Sol-Gel Sci. Tech. 58, 507 (2011).

    Article  Google Scholar 

  7. A. A. S. Lopes, R. C. C. Monteiro, and R. S. Soares, J. Alloys Compd. 591, 268 (2014).

    Article  Google Scholar 

  8. M. Ghasemzadeh, A. Nemati, and A. Nozad, Ceramics-Silikaty 55, 188 (2011).

    Google Scholar 

  9. E. J. C. Davim, A. M. R. Senos, and M. H. V. Fernandes. J. Therm. Anal. Calorim. 117, 643 (2014).

    Article  Google Scholar 

  10. A. Arora, E. R. Shaaban, and K. Singh, J. Non-Cryst. Solids 354, 3944 (2008).

    Article  ADS  Google Scholar 

  11. G. C. Kang. J. Mater. Sci. 36, 1043 (2001).

    Article  Google Scholar 

  12. G. O. Piloyan, I. D. Rybachikov, and O. S. Novikov, Nature 212, 1229 (1966).

    Article  ADS  Google Scholar 

  13. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  14. J. C. Qiao and J. M. Pelletier, J. Non-Cryst. Solids 357, 2590 (2011).

    Article  ADS  Google Scholar 

  15. N. Khair and M. A. Chaudhry, J. Mater. Sci. 48, 1368 (2013).

    Article  ADS  Google Scholar 

  16. S. D. Stookey, Ind. Eng. Chem. 51, 805 (1959).

    Article  Google Scholar 

  17. A. M. Hu, K. M. Liang, G. Wang, et al., J. Therm. Anal. Calorim. 78, 991 (2004).

    Article  Google Scholar 

  18. P. E. Doherty, D. W. Lee, and R. S. Davis, Am. Ceram. Soc. 50, 7781 (1967).

    Article  Google Scholar 

  19. J. W. Cao, Y. H. Li, and K. M. Liang, Adv. Appl. Ceram. 108, 352 (2009).

    Article  Google Scholar 

  20. W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).

    Google Scholar 

  21. M. J. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  ADS  Google Scholar 

  22. M. A. Gabal, Thermochim. Acta 402, 199 (2003).

    Article  Google Scholar 

  23. P. Budrugeac and E. Segal, J. Therm. Anal. Calorim. 82, 677 (2005).

    Article  Google Scholar 

  24. A. W. Coats and J. P. Redfern, Nature 201, 68 (1964).

    Article  ADS  Google Scholar 

  25. B. Jankovic and S. Mentus, Metall. Mater. Trans. A 40, 609 (2009).

    Article  Google Scholar 

  26. J. A. Augis and J. E. Bennett, J. Therm. Anal. 13, 283 (1978).

    Article  Google Scholar 

  27. K. Matusita, T. Komatsu, and R. Yokota. J. Mater. Sci. 19, 291 (1984).

    Article  ADS  Google Scholar 

  28. G. Baldi, E. Generali, C. Leonelli, T. Manfredini, G. C. Pellacani, and C. Siligardi, J. Mater. Sci. 30, 3251 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Additional information

The article is published in the original.

An erratum to this article is available at http://dx.doi.org/10.1134/S106377451733001X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, Y., Luo, W. et al. Non-isothermal crystallization kinetics of Fe2O3–CaO–SiO2 glass containing nucleation agent P2O5/TiO2 . Crystallogr. Rep. 62, 260–264 (2017). https://doi.org/10.1134/S1063774517020080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517020080

Navigation