Skip to main content
Log in

A Kinetic Study of the Nonisothermal Decomposition of Palladium Acetylacetonate Investigated by Thermogravimetric and X-Ray Diffraction Analysis Determination of Distributed Reactivity Model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nonisothermal decomposition process of the powder sample of palladium acetylacetonate [Pd(acac)2] was investigated by thermogravimetric (TG) and X-ray diffraction (XRD) techniques. The experimental TG and differential thermogravimetric (DTG) curves were obtained at different heating rates (β = 2 °C min−1, 5 °C min−1, 10 °C min−1, 20 °C min−1, and 30 °C min−1) under a pure nitrogen (N2) atmosphere. The kinetic triplet (A, E a , and model function f(α)) was determined using different kinetic methods. It was found that the apparent activation energy was not really changed and was almost independent with respect to the level of conversion (α). This result suggests that the nonisothermal decomposition process of palladium acetylacetonate follows a single-step reaction. Practically constant E a values approximating 140.1 ± 1.5 kJ mol−1 were found. It was concluded that the reaction model R3, for the integral composite method I, is the model with the best regression and with kinetic parameters that are both unique and very similar to those obtained by the Friedman isoconversional method. In addition, it was found that the results obtained from both the Master-plot and Málek methods confirm the results obtained from the multiple-rate isotemperature method, specifically, that the R3 (contracting volume) reaction mechanism can best describe the investigated decomposition process. By applying the Miura procedure, a distributed reactivity model (DRM) for the investigated decomposition process was established. From the α = α(E a ) dependence, the experimental distribution curve of E a was estimated. Using the nonlinear (NL) least-squares analysis, it was found that the Gaussian distribution model (with distribution parameters: E 0 = 138.4 kJ mol−1 and σ = 0.71 kJ mol−1) represents the best reactivity model for describing the investigated process. Also, it was concluded that the E a values calculated by the Friedman isoconversional method and the estimated distribution curve (f(E a )), are correct, even in the case in which the investigated decomposition process occurs through a single-step reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. H.D. Kaesz, R.S. William, R.F. Hicks, J.I. Zink, Y. Chen, H.J. Muller, Z. Xue, D. Xu, D.K. Shuh, and Y.K. Kim: New J. Chem., 1990, vol. 14, pp. 527–34

    CAS  Google Scholar 

  2. R. Ugo, C. Dossi, and R. Psaro: J. Mol. Catal. A, 1996, vol. 107, pp. 13–22

    Article  CAS  Google Scholar 

  3. M.A. Aramendía, V. Boráu, I.M. García, C. Jiménez, J.M. Marinas, and F.J. Urbano: Appl. Catal. B, 1999, vol. 20, pp. 101–10

    Article  Google Scholar 

  4. W. Daniell, H. Landes, N.E. Fouad, and H. Knözinger: J. Mol. Catal. A, 2002, vol. 178, pp. 211–18

    Article  CAS  Google Scholar 

  5. C. Dossi, R. Psaro, A. Bartsch, A. Fusi, L. Sordelli, R. Ugo, M. Bellatreccia, R. Zanoni, and G. Vlaic: J. Catal., 1994, vol. 145, pp. 377–83

    Article  CAS  Google Scholar 

  6. J.A.R. van Veen, G. Jonkers, and W.H. Hesselink: J. Chem. Soc. Faraday Trans I, 1989, vol. 85, pp. 389–413

    Article  Google Scholar 

  7. J.C. Kenvin, M.G. White, and M.B. Mitchell: Langmuir, 1991, vol. 7, pp. 1198–1205

    Article  CAS  Google Scholar 

  8. J.R. van Veen, M.S.P.C. DeJong-Versloot, G.M.M. van Kessel, and F.J. Fels: Thermochim. Acta, 1989, vol. 152, pp. 359–70

    Article  Google Scholar 

  9. C. Dossi, R. Psaro, A. Bartsch, E. Brivio, A. Galasco, and P. Losi: Catal. Today, 1993, vol. 17, pp. 527–35

    Article  CAS  Google Scholar 

  10. C. Dossi, A. Fusi, and R. Psaro, G.M. Zanderighi: Appl. Catal., 1989, vol. 46, pp. 145–51

    Article  CAS  Google Scholar 

  11. C.M. Tsang, S.M. Augustine, J.B. Butt, and W.M.H. Sachtler: Appl. Catal., 1989, vol. 46, pp. 45–56

    Article  CAS  Google Scholar 

  12. C. Dossi, A. Fusi, R. Psaro, and D. Roberto: Thermochim. Acta, 1991, vol. 182, pp. 273–80

    Article  CAS  Google Scholar 

  13. W. Wendlandt: Thermal Methods of Analysis, 3rd ed., Wiley, New York, NY, 1986, pp. 23–25

    Google Scholar 

  14. G.A. Razuvaev, B.G. Gribov, G.A. Domrachev, and B.A. Solomatin: Metalloorganicheskie Soedineniya v Electronike, Nauka, Moscow, 1972, pp. 16–20

    Google Scholar 

  15. P.H. Nguyen: Eur. Appl., 1989, vol. 266, pp. 877–80

    Google Scholar 

  16. J.-C. Hierso, R. Feurer, and P. Kalck: Coord. Chem. Rev., 1998, vols. 178–180, pp. 1811–34

    Article  Google Scholar 

  17. V.S. Khandkarova: Cobalt , Nickel, Platinum Metals, Nauka, Moscow, 1978, pp. 39–40

  18. P.M. Maitlis: The Organic Chemistry of Palladium, Academic Press, New York, NY, 1971, pp. 17–19

    Google Scholar 

  19. I. Matsuura, Y. Hashimoto, O. Takayasu, K. Nitta, and Y. Yoshida: Appl. Catal., 1991, vol. 74, pp. 273–80

    CAS  Google Scholar 

  20. V. Cominos, and A. Gavriilidis: Appl. Catal. A, 2001, vol. 210, pp. 381–90

    Article  CAS  Google Scholar 

  21. V. Cominos, and A. Gavriilidis: Eur. Phys. J. AP, 2001, vol. 15, pp. 23–33

    Article  ADS  CAS  Google Scholar 

  22. S. Poston, and A. Reisman: J. Electron. Mater., 1989, vol. 18, pp. 553–60

    Article  ADS  CAS  Google Scholar 

  23. V.M. Paasonen, P.P. Semyannikov, and A.S. Nazarov: Chem. Sust. Dev., 2002, vol. 10, pp. 751–56

    Google Scholar 

  24. M. Lashdaf, T. Hatanpää, and M. Tiitta: J. Therm. Anal. Calorim., 2001, vol. 64, 1171–82

    Article  CAS  Google Scholar 

  25. L. Liqing, and C. Donghua: J. Therm. Anal. Calorim., 2004, vol. 78, pp. 283–93

    Article  CAS  Google Scholar 

  26. P.G. Bosewell: J. Therm. Anal. Calorim., 1980, vol. 18, pp. 353–58

    Article  Google Scholar 

  27. J.A. Augis, and J.E. Bennett: J. Therm. Anal. Calorim., 1978, vol. 13, pp. 283–92

    Article  CAS  Google Scholar 

  28. F.J. Gotor, J.M. Criado, J. Málek, and M. Koga: J. Phys. Chem. A, 2000, vol. 104, pp. 10777–10782

    Article  CAS  Google Scholar 

  29. H. Friedman: J. Polym. Sci. C, 1964, vol. 6, pp. 183–87

    Google Scholar 

  30. P. Budrugeac, and E. Segal: J. Therm. Anal. Calorim., 2005, vol. 82, pp. 677–80

    Article  CAS  Google Scholar 

  31. M.A. Gabal: Thermochim. Acta, 2003, vol. 402, pp. 199–208

    Article  CAS  Google Scholar 

  32. J.M. Criado, L.A. Pérez-Maqueda, F.J. Gotor, J. Málek, and N. Koga: J. Therm. Anal. Calorim., 2003, vol. 72, pp. 901–06

    Article  CAS  Google Scholar 

  33. J. Málek: Thermochim. Acta, 1992, vol. 200, pp. 257–69

    Article  Google Scholar 

  34. J. Málek: Thermochim. Acta, 2000, vol. 355, pp. 239–53

    Article  Google Scholar 

  35. J. Málek: Thermochim. Acta, 1989, vol. 138, pp. 337–46

    Article  Google Scholar 

  36. K. Miura: Energy Fuels, 1995, vol. 9, pp. 302–07

    Article  CAS  Google Scholar 

  37. K. Miura, and T. Maki: Energy Fuels, 1998, vol. 12, pp. 864–69

    Article  CAS  Google Scholar 

  38. S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura, and S. Kawaguchi: Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 1085–95

    Article  CAS  Google Scholar 

  39. R.Z. Hu, and Q.Z. Shi: Thermal Analysis Kinetics, Science Press, Beijing, 2001, pp. 20–21

    Google Scholar 

  40. J.H. Flynn: Thermochim. Acta, 1997, vol. 300, pp. 83–92

    Article  CAS  Google Scholar 

  41. S. Vyazovkin, and C.A. Wight: Thermochim. Acta, 1999, vols. 340–341, pp. 53–68

    Article  Google Scholar 

  42. A.W. Coats, and J.P. Redfern: Nature, 1964, vol. 201, pp. 68–70

    Article  ADS  CAS  Google Scholar 

  43. G.I. Senum, and R.T. Yang: J. Therm. Anal. Calorim., 1977, vol. 11, pp. 445–47

    Article  Google Scholar 

  44. D.B. Anthony, and J.B. Howard: AIChE J., 1976, vol. 22, pp. 625–56

    Article  ADS  CAS  Google Scholar 

  45. R.L. Braun, and A.K. Burnham: Energy Fuels, 1987, vol. 1, pp. 153–61

    Article  CAS  Google Scholar 

  46. J.H. Campbell, G. Gallegos, and M. Gregg: Fuel, 1980, vol. 59, pp. 727–32

    Article  CAS  Google Scholar 

  47. C.H. Yun, W.J. Kim, and S.C. Yi: J. Ind. Eng. Chem., 2008, vol. 14, pp. 120–30

    Article  CAS  Google Scholar 

  48. C.C. Lakshmanan, and N. White: Energy Fuels, 1994, vol. 8, pp. 1158–67

    Article  CAS  Google Scholar 

  49. B.P. Boudreau, and B.R. Ruddick: Am. J. Sci., 1991, vol. 291, pp. 507–38

    CAS  Google Scholar 

  50. T.C. Ho, and R. Aris: AIChE J., 1987, vol. 33, pp. 1050–51

    Article  Google Scholar 

  51. R. Aris: AIChE J., 1989, vol. 35, pp. 539–48

    Article  CAS  Google Scholar 

  52. G. Astarita: AIChE J., 1989, vol. 35, pp. 529–32

    Article  CAS  Google Scholar 

  53. P. Ungerer: in Thermal Phenomena in Sedimentary Basins, B. Durand, ed., Technip, Paris, 1986, pp. 235–36

    Google Scholar 

  54. A.K. Burnham, R.L. Braun, H.R. Gregg, and A.M. Samoun: Energy Fuels, 1987, vol. 1, pp. 452–58

    Article  CAS  Google Scholar 

  55. G.I. Zharkova, P.A. Stabnikov, S.A. Sysoev, and I.K. Igumenov: J. Struct. Chem., 2005, vol. 46, pp. 320–27

    Article  CAS  Google Scholar 

  56. L. Guang, G. Weigui, L. Weipeng, P. Shaoping, Y. Gexin, and H. Ying: Xiyou Jinshu Cailiao Yu Gongcheng (Rare Met. Mater. Eng.), 2006, vol. 35, pp. 150–55

    Google Scholar 

  57. Y.F. Lee, and D. Dollimore: Thermochim. Acta, 1998, vol. 323, pp. 75–81

    Article  Google Scholar 

  58. S. Vyazovkin, and C.A. Wight: Int. Rev. Phys. Chem., 1998, vol. 17, pp. 407–33

    Article  CAS  Google Scholar 

  59. J. Opfermann, and H.J. Flammersheim: Thermochim. Acta, 2003, vol. 397, pp. 1–3

    Article  CAS  Google Scholar 

  60. N. Koga, and J.M. Criado: J. Am. Ceram. Soc., 1998, vol. 81, pp. 2901–09

    Article  CAS  Google Scholar 

  61. N. Koga, and J.M. Criado: J. Therm. Anal. Calorim., 1997, vol. 49, pp. 1477–84

    Article  CAS  Google Scholar 

  62. B. Delmon: Introduction a la Cinétique Hétérogéne, Technip, Paris, 1969, pp. 53–55

    Google Scholar 

  63. P.P. Semyannikov, V.M. Grankin, I.K. Igumenov, and A.F. Bykov: J. Phys., 1995, vol. 4, pp. 205–11

    Google Scholar 

  64. A.G. Nasibulin, P.P. Ahonen, O. Richard, E.I. Kauppinen, and I.S. Altman: J. Nanopart. Res., 2001, vol. 3, pp. 385–400

    Article  CAS  Google Scholar 

  65. A.G. Nasibulin, I.S. Altman, and E.I. Kauppinen: Chem. Phys. Lett., 2003, vol. 367, pp. 771–77

    Article  ADS  CAS  Google Scholar 

  66. E. Kenezaki, S. Tanaka, K. Murai, T. Moriga, J. Motonaka, M. Katoh, and I. Nakabayashi: Anal. Sci., 2004, vol. 20, pp. 1069–75

    Article  Google Scholar 

  67. N. Ren, A.-G. Dong, W.-B. Cai, Y.-H. Zhang, W.-L. Yang, S.-J. Huo, Y. Chen, S.-H. Xie, Z. Gao, and Y. Tang: J. Mater. Chem., 2004, vol. 14, pp. 3548–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Ministry of Science and Environmental Protection of Serbia, through Project Nos. 142025 and 142047 (Professor S. Mentus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Janković.

Additional information

Manuscript submitted April 24, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janković, B., Mentus, S. A Kinetic Study of the Nonisothermal Decomposition of Palladium Acetylacetonate Investigated by Thermogravimetric and X-Ray Diffraction Analysis Determination of Distributed Reactivity Model . Metall Mater Trans A 40, 609–624 (2009). https://doi.org/10.1007/s11661-008-9754-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9754-4

Keywords

Navigation