Skip to main content
Log in

Synthesis, characterization, thermal behaviour and single crystal X-ray analysis of two new insensitive high energy density materials [8-hydroxyquinolinium 5-(2,4,6-trinitrophenyl)barbiturate (I) and 8-hydroxyquinolinium 5-(5-chloro-2,4-dinitrophenyl)-1,3-dimethyl barbiturate (II)]

  • Structure of Organic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Barbiturates I and II have been synthesized as maroon red and red orange coloured solids by mixing the ethanolic solutions of 2-chloro-1,3,5-trinitrobenzene (TNCB), pyrimidine-2,4,6(1H,3H,5H)-trione [barbituric acid (BA)] and 8-hydroxyquinoline and 1,3-dichloro-4,6-dinitrobenzene (DCDNB), 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione(1,3-dimethylbarbituric acid) and 8-hydroxyquinoline respectively. The structures of these two barbiturates have been predicted from the spectral studies (UV-VIS, IR, 1H NMR, 13C NMR, mass) and elemental analysis. Qualitative tests have been carried out to infer the presence of nitrogen and nitro groups and also chlorine atom in barbiturate II. Slow evaporation of ethanol-dimethylsulphoxide/ethanol solutions of barbiturate I/barbiturate II at 293 K yielded good for X-Ray diffraction crystals. Single crystal X-ray diffraction studies of the crystals further confirm the putative structures of the barbiturates. The asymmetric unit of the barbiturate I comprises of 8-hydroxyquinolinium cation, 5-(2,4,6-trinitrophenyl) barbiturate anion and a molecule of dimethylsulphoxide (DMSO), which is used as a recrystallizing solvent. It crystallizes in the triclinic system with space group \(P\bar 1\) (centrosymmetric). Barbiturate II crystallizes in the orthorhombic system with space group P212121 (non-centrosymmetric). Barbiturates I and II are stable towards an impact sensitivity test, when a weight of 2 kg mass hammer is dropped from a height of 160 cm of the instrument. TGA/DTA analyses at four different heating rates (5, 10, 20, and 40 K/min) imply that they undergo exothermic decomposition (∼85%) in three different stages between 273 and 873 K. Activation energies for these decomposition processes have been calculated by employing Kissinger and Ozawa plots. Impact sensitivity test and activation energies have revealed that the titled barbiturates are insensitive high energy density materials (IHEDMS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Meyer, J. Kohler, and A. Homburg, Explosives, 6th ed. (Wiley-VCH, Hamburg, 2007).

    Book  Google Scholar 

  2. S. G. Cho, Bull. Korean Chem. Soc. 30, 177 (2009).

    Article  Google Scholar 

  3. J. P. Agrawal, High-Energy Materials (Wiley-VCH, Hamburg, 2010).

    Book  Google Scholar 

  4. E. E. Gilbert and N. J. Morristown, US Patent No. 3941812 (1976).

  5. A. J. Bellamy, D. S. King, and P. Golding, Propellants Explos. Pyrotech. 29, 166 (2004).

    Article  Google Scholar 

  6. H. S. Jadhav, M. B. Talawar, R. Sivabalan, et al. Indian J. Heterocycl. Chem. 15, 383 (2006).

    Google Scholar 

  7. Z. Ge, S. Qiu, J. Jiang, and X. Wang, Huozhayao Xuebao 31, 177 (2008).

    Google Scholar 

  8. H. Oestmark, S. Walin, and P. Goede, Centr. Eur. J. Energetic Mater. 4, 83 (2007).

    Google Scholar 

  9. D. M. Badgujar, M. B. Talawar, S. N. Asthana, and P. P. Mahulikar, J. Hazardous Mater. 151, 289 (2008).

    Article  Google Scholar 

  10. T. M. Klapötke, Chemistry of High-Energy Materials (Walter de Gruyter, Berlin, 2011).

    Google Scholar 

  11. P. Politzer, M. C. Concha, M. E. Grice, et al., Theochem. 452, 75 (1998).

    Article  Google Scholar 

  12. S. M. Peiris, C. P. Wong, and F. J. Zerilli, J. Chem. Phys, 120, 8060 (2004).

    Article  ADS  Google Scholar 

  13. U. R. Nair, S. N. Asthana, A. S. Rao, and B. R. Gandhe, Defence Sci. J. 60, 137 (2010).

    Article  Google Scholar 

  14. J. C. Ritter, US Patent No. US8003831B1 (2011).

  15. A. I. Vogel, Text Book of Practical Organic Chemistry, 4th ed. (Longman, London, 1978).

    Google Scholar 

  16. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  17. T. Ozawa, Bull. Chem. Soc. Jpn. 38,1881 (1965).

    Article  Google Scholar 

  18. Bruker APEX2, SAINT-Plus and SADABS (Brunker AXS, Madison, Wisconsin, USA, 2004).

  19. A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi, J. Appl Crystallogr. 26, 343 (1993).

    Article  Google Scholar 

  20. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).

    Article  ADS  Google Scholar 

  21. L. J. Farrugia, J. Appl. Crystallogr. 30, 56 (1997).

    Google Scholar 

  22. C. F. Macrae, I. J. Bruno, J. A. Chisholm, et al., J. Appl. Crystallogr. 41, 466 (2008).

    Article  Google Scholar 

  23. R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds (Wiley, New York, 2004) p. 103.

    Google Scholar 

  24. E. Ramachandran, K. Baskaran, and S. Natarajan, Cryst. Res. Technol. 42, 73 (2007).

    Article  Google Scholar 

  25. W. Kemp, Organic Spectroscopy (Palgrave, New York, 1991), p. 192.

    Google Scholar 

  26. D. W. Bennett, Understanding Single Crystal X-Ray Crystallography (Wiley-VCH, Hamburg, 2010) p. 164.

    Google Scholar 

  27. M. Buvaneswari and D. Kalaivani, Acta Crystallogr. E 67, o1433 (2011).

    Article  Google Scholar 

  28. M. Buvaneswari and D. Kalaivani, Acta Crystallogr. E 67, o3452 (2011).

    Article  Google Scholar 

  29. V. Manickkam and D. Kalaivani, Acta Crystallogr. E 67, o3475 (2011).

    Article  Google Scholar 

  30. R. Babykala and D. Kalaivani, Acta Crystallogr. E 68, o2941 (2012).

    Article  Google Scholar 

  31. D. Kalaivani, M. Buvaneswari and S. Rajeswari, Acta Crystallogr. E 68, o29 (2012).

    Article  Google Scholar 

  32. R. Babykala and D. Kalaivani, Acta Crystallogr. E 68, o541 (2012).

    Article  Google Scholar 

  33. R. Babykala and D. Kalaivani, Acta Crystallogr. E 69, o398 (2013).

    Article  Google Scholar 

  34. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives (Wiley, 2007).

    Google Scholar 

  35. J. P. Agarwal, Prog. Energy Combust. Sci. 24, 1 (1998).

    Article  Google Scholar 

  36. P. P. Politzer, J. S. Murray, J. M. Seminario, et al. J. Mol. Struct. 573, 1 (2001).

    Article  Google Scholar 

  37. A. K. Sikder, R. B. Salunke, and N. Sikder, New J. Chem. 25, 1549 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kalaivani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manickkam, V., Devi, P.P. & Kalaivani, D. Synthesis, characterization, thermal behaviour and single crystal X-ray analysis of two new insensitive high energy density materials [8-hydroxyquinolinium 5-(2,4,6-trinitrophenyl)barbiturate (I) and 8-hydroxyquinolinium 5-(5-chloro-2,4-dinitrophenyl)-1,3-dimethyl barbiturate (II)]. Crystallogr. Rep. 59, 1042–1050 (2014). https://doi.org/10.1134/S1063774514060200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514060200

Keywords

Navigation