Skip to main content
Log in

Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

  • Real Structure of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, Nature Photonics 5, 539 (2011).

    Article  ADS  Google Scholar 

  2. P. Van Vaerenbergh, C. Detlefs, J. Hartwig, et al., AIP Conf. Proc. 1234, 229 (2010).

    Article  ADS  Google Scholar 

  3. R. S. Balmer, J. R. Brandon, S. L. Clewes, et al., J. Phys.: Condens. Matter 21, 3642211 (2009).

    Google Scholar 

  4. A. B. Muchnikov, A. L. Vikharev, A. M. Gorbachev, et al., Diamond Relat. Mater. 19, 432 (2010).

    Article  ADS  Google Scholar 

  5. A. P. Bol’shakov, V. G. Ral’chenko, A. V. Pol’skii, et al., Prikl. Fiz. 6, 104 (2011).

    Google Scholar 

  6. I. A. Prokhorov and B. G. Zakharov, Poverkhnost, No. 2, 106 (1999).

    Google Scholar 

  7. Yu. Shvyd’ko, S. Stoupin, A. Cunsolo, et al., Nature Phys. 6, 196 (2010).

    Article  ADS  Google Scholar 

  8. R. C. Burns, A. I. Chumakov, S. H. Connell, et al., J. Phys.: Condens. Matter 21, 364224 (2009).

    Google Scholar 

  9. P. M. Martineau, M. P. Gaukroger, K. B. Guy, et al., J. Phys.: Condens. Matter 21, 364205 (2009).

    Google Scholar 

  10. A. R. Lang, M. Moore, A. P. Makepeace, et al., Philos. Trans. R. Soc. London, Ser. A 337, 497 (1991).

    Article  ADS  Google Scholar 

  11. O. A. Voronov, A. V. Rakhmanina, and E. P. Khlybov, Inorg. Mater. 31, 851 (1995).

    Google Scholar 

  12. F. Brunet, A. Deneuville, P. Germi, et al., J. Appl. Phys. 81(3), 1120 (1997).

    Article  ADS  Google Scholar 

  13. J. W. Matthews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).

    Article  ADS  Google Scholar 

  14. S. I. Stenin, Phys. Status Solidi A 55, 519 (1979).

    Article  ADS  Google Scholar 

  15. M. P. Gaukroger, P. M. Martineau, M. J. Crowder, et al., Diamond Relat. Mater. 16, 262 (2008).

    Article  ADS  Google Scholar 

  16. I. A. Prokhorov, B. G. Zakharov, V. S. Man’shin, and I. L. Shul’pina, J. Phys. D: Appl. Phys. 26, A76 (1993).

    Article  ADS  Google Scholar 

  17. W. J. Bartels and W. Nijman, J. Cryst. Growth 44, 518 (1978).

    Article  ADS  Google Scholar 

  18. J. Hornstra and W. J. Bartels, J. Cryst. Growth 44, 513 (1978).

    Article  ADS  Google Scholar 

  19. S. V. Nistor, M. Stefan, V. Ralchenko, et al., J. Appl. Phys. 87, 8741 (2000).

    Article  ADS  Google Scholar 

  20. W. Kaiser and W. L. Bond, Phys. Rev. 115(4), 857 (1959).

    Article  ADS  Google Scholar 

  21. A. R. Lang, J. Phys. D: Appl. Phys. 26, 2239 (1993).

    Article  ADS  Google Scholar 

  22. J. P. Hirsh and I. Lothe, Theory of Dislocations (McGrow-Hill, New York, 1968).

    Google Scholar 

  23. G. F. Kuznetsov, V. G. Ral’chenko, V. P. Varnin, et al., Crystallogr. Rep. 47(2), 298 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Prokhorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorov, I.A., Ralchenko, V.G., Bolshakov, A.P. et al. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry. Crystallogr. Rep. 58, 1010–1016 (2013). https://doi.org/10.1134/S1063774513070146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774513070146

Keywords

Navigation