Skip to main content
Log in

Superionic conductivity of Sr0.68Pr0.32F2.32 (type CaF2) and Pr0.85Sr0.15F2.85 (type LaF3) crystals, as-grown and after high-temperature annealing

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The influence of high-temperature annealing (900°C, 14 days) in a fluorinating atmosphere on the superionic conductivity σ of as-grown Sr0.68Pr0.32F2.32 single crystals with fluorite structure (CaF2) and Pr0.85Sr0.15F2.85 single crystals with tysonite structure (LaF3), obtained by the directional solidification of melts in the SrF2-PrF3 system using the Bridgman method, is studied. The annealing that brings the defect structure of crystals to equilibrium at 900°C (which is retained by quenching) does not affect σ values. At 500 K, σ is 4 × 10−4 and 2 × 10−2 S/cm for Sr0.68Pr0.32F2.32 and Pr0.85Sr0.15F2.85, respectively. As-grown superionic conductor single crystals, which are formed in some MF2-RF3 systems (M = Ca, Sr, Ba; R are rare earth elements), where the mutual solubility of components in nonstoichiometric phases depends weakly on temperature, can be used in solid-state electrochemical devices operating at high temperatures and under temperature cycling conditions without the deterioration of their electrical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Institute of Crystallography, Moscow, 2000; Institut d’Estudis Catalans, Barcelona, 2000).

    Google Scholar 

  2. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52(5), 842 (2007).

    Article  ADS  Google Scholar 

  3. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Fiz. Tverd. Tela 25(6), 1748 (1983).

    Google Scholar 

  4. N. I. Sorokin and B. P. Sobolev, Kristallografiya 39(5), 889 (1994).

    Google Scholar 

  5. N. I. Sorokin and B. P. Sobolev, Kristallografiya 39(1), 114 (1994).

    ADS  Google Scholar 

  6. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Crystallogr. Rep. 45(4), 695 (2000).

    Article  ADS  Google Scholar 

  7. N. I. Sorokin, Elektrokhimiya 42(7), 828 (2006).

    Google Scholar 

  8. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Kristallografiya 41(2), 310 (1996).

    Google Scholar 

  9. N. I. Sorokin, M. V. Fominykh, V. I. Fistul’, et al., Fiz. Tverd. Tela 41(4), 638 (1999).

    Google Scholar 

  10. E. F. Sudakova, E. Ya. Alksnis, R. S. Perlovskii, et al., Symp. on Solid State Ionics, Boston, USA, 1992, Section U-6.5, p. 160.

  11. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proc. All-Russia Conf. “Sensor 2000: Sensors and Microsystems”, St. Peterburg, Russia, 2000, p. 322.

  12. M. Anji Reddy and M. Fichtner, J. Mater. Sci. 21(43), 17059 (2011).

    Google Scholar 

  13. J. W. Fergus, Sens. Actuators B 42, 119 (1997).

    Article  Google Scholar 

  14. A. A. Potanin, Zh. Vseross. Khim. O-va im. D. I. Mendeleeva 45(5–6), 58 (2001).

    Google Scholar 

  15. E. Fridman and W. Low, J. Chem. Phys. 33(4), 1275 (1960).

    Article  ADS  Google Scholar 

  16. M. Hofmann, S. Hull, G. J. McIntyre, et al., J. Phys: Condens. Matter 9(4), 845 (1997).

    ADS  Google Scholar 

  17. C. R. A. Catlow, A. W. Chadwick, and J. Corish, Radiat. Eff. 75, 61 (1983).

    Article  Google Scholar 

  18. F. Kadlec, F. Moussa, P. Simon, et al., Mater. Sci. Eng. B 57, 234 (1999).

    Article  Google Scholar 

  19. V. V. Sinitsyn, O. Lips, A. F. Privalov, et al., J. Phys. Chem. Solids 64, 1201 (2003).

    Article  ADS  Google Scholar 

  20. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 43(4), 420 (2007).

    Google Scholar 

  21. N. I. Sorokin and M. W. Breiter, Solid State Ionics 99, 241 (1997).

    Article  Google Scholar 

  22. N. I. Sorokin, B. P. Sobolev, and M. Braiter, Elektrokhimiya 38(5), 579 (2002).

    Google Scholar 

  23. A. K. Ivanov-Shits, N. I. Sorokin, P. Fedorov, et al., Solid State Ionics 31, 253 (1989).

    Article  Google Scholar 

  24. B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39, 17 (1981).

    Article  Google Scholar 

  25. A. Roos, F. C. M. van de Pol, R. Keim, et al., Solid State Ionics 13, 191 (1984).

    Article  Google Scholar 

  26. P. P. Fedorov, Zh. Neorg. Khim. 37(8), 1891 (1992).

    Google Scholar 

  27. B. P. Sobolev, A. M. Golubev, E. A. Krivandina, et al., Crystallogr. Rep. 47(2), 201 (2002).

    Article  ADS  Google Scholar 

  28. N. I. Sorokin, D. N. Karimov, E. A. Sul’yanova, et al., Crystallogr. Rep. 55(4), 662 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, Z.I. Zhmurova, E.A. Krivandina, B.P. Sobolev, 2014, published in Kristallografiya, 2014, Vol. 59, No. 1, pp. 98–102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, N.I., Zhmurova, Z.I., Krivandina, E.A. et al. Superionic conductivity of Sr0.68Pr0.32F2.32 (type CaF2) and Pr0.85Sr0.15F2.85 (type LaF3) crystals, as-grown and after high-temperature annealing. Crystallogr. Rep. 59, 88–92 (2014). https://doi.org/10.1134/S1063774513050131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774513050131

Keywords

Navigation