Skip to main content
Log in

Mobility of Charge Carriers in a Single Crystal and Nanoceramic of the Superionic Pb1 – xSnxF2 Conductor (x = 0.2)

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A crystallophysical model of ion transfer in the superionic Pb1 – xSnxF2 conductor with a fluorite (CaF2) structure is proposed. The concentration dependence of the ionic conductivity of Pb1 – xSnxF2 single crystals and poly- and nanocrystals is analyzed. The single-crystal form of the superionic conductor is characterized by the highest conductivity. The mobility and concentration of anionic charge carriers in a single crystal and ceramics of Pb1 – xSnxF2 (x = 0.2) is calculated on the basis of structural and electrophysical data. The mobility of carriers μmob = 2.5 × 10–6 cm2/s V (at 293 K) in a single crystal is seven times higher than in nanoceramic. The concentration of carriers nmob = 1.7 × 1021 and 3.6 × 1021 cm3 (4.5 and 9.5% of the total number of anions) for a single crystal and nanoceramic, respectively. The comparison of isostructural Pb0.8Sn0.2F2, Pb0.67Cd0.33F2, and Pb0.9Sc0.1F2.1 single crystals shows that anionic carriers have a maximum mobility in the β-PbF2 and SnF2 based solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. C. K. Jorgensen, Top. Curr. Chem. 56, 1 (1975).

    Article  Google Scholar 

  2. N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Inorg. Mater. 33, 1 (1997).

    Google Scholar 

  3. L. N. Patro and K. Hariharan, Solid State Ionics 239, 41 (2013).

    Article  Google Scholar 

  4. M. A. Reddy and M. Fichtner, Fluoride-Ion Conductors, Ed. by W. C. West and J. Nanda (World Scientific, Singapore, 2016), p. 277.

    Google Scholar 

  5. P. P. Fedorov, V. K. Goncharuk, I. G. Maslennikova, I. A. Telin, and T. Yu. Glazunova, Russ. J. Inorg. Chem. 61, 239 (2016).

    Article  Google Scholar 

  6. C. Lucat, A. Rhandour, L. Cot, and J. M. Reau, Solid State Commun. 32, 167 (1979).

    Article  ADS  Google Scholar 

  7. S. Vilminot, G. Perez, W. Granier, and L. Cot, Solid State Ionics 2, 91 (1981).

    Article  Google Scholar 

  8. Y. Ito, T. Mukoyama, K. Ashio, K. Yamamoto, Y. Suga, S. Yoshikado, C. Julien, and T. Tanaka, Solid State Ionics 106, 291 (1998).

    Article  Google Scholar 

  9. S. Yoshikato, Y. Ito, and Y. M. Reau, Solid State Ionics 154–155, 503 (2002).

    Article  Google Scholar 

  10. M. Uno, M. Onitsuka, Y. Ito, and S. Yoshikado, Solid State Ionics 176, 2493 (2005).

    Article  Google Scholar 

  11. M. M. Ahmad, Y. Yamane, K. Yamada, and S. Tanaka, J. Phys. D 40, 6020 (2007).

    Article  ADS  Google Scholar 

  12. M. M. Ahmad and K. Yamada, J. Chem. Phys. 127, 124507 (2007).

    Article  ADS  Google Scholar 

  13. M. M. Ahmad, J. Mater. Sci.: Mater. Electron. 25, 4398 (2014).

    Google Scholar 

  14. N. I. Sorokin, Phys. Solid State 57, 1352 (2015).

    Article  ADS  Google Scholar 

  15. N. I. Sorokin, Phys. Solid State 60, 714 (2018).

    Article  ADS  Google Scholar 

  16. R. W. Bonne and J. Schoonman, J. Electrochem. Soc. 124, 28 (1977).

    Article  Google Scholar 

  17. I. V. Murin, A. V. Glumov, and O. V. Glumov, Elektrokhimiya 15, 1119 (1979).

    Google Scholar 

  18. A. B. Lidiard, in Crystals with the Fluorite Structure, Ed. by W. Hayes (Clarendon, Oxford, 1974), p. 101.

    Google Scholar 

  19. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).

    Article  ADS  Google Scholar 

  20. V. Trnovcova, P. P. Fedorov, M. Ozvoldova, I. I. Buchinskaya, and E. A. Zhurova, J. Optoelectron. Adv. Mater. 5, 627 (2003).

    Google Scholar 

  21. I. V. Murin and S. V. Chernov, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 168 (1982).

    Google Scholar 

  22. N. I. Sorokin, I. I. Buchinskaya, and B. P. Sobolev, Zh. Neorg. Khim. 37, 2653 (1992).

    Google Scholar 

  23. N. I. Sorokin, B. P. Sobolev, and M. Breiter, Phys. Solid State 44, 1579 (2002).

    Article  ADS  Google Scholar 

  24. I. Yu. Gotlib, I. V. Murin, I. V. Piotrovskaya, and E. N. Brodskaya, Inorg. Mater. 38, 975 (2002).

    Google Scholar 

  25. D. P. Almond, C. C. Hunter, and A. R. West, J. Mater. Sci. 19, 3236 (1984).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education within the works on the state task for the Federal Research Center “Crystallography and Photonics” of the Shubnikov Institute of Crystallography of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Ethics declarations

The author declare that he has no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I. Mobility of Charge Carriers in a Single Crystal and Nanoceramic of the Superionic Pb1 – xSnxF2 Conductor (x = 0.2). Phys. Solid State 61, 2014–2018 (2019). https://doi.org/10.1134/S1063783419110362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419110362

Keywords:

Navigation