Skip to main content
Log in

Structural conditionality of the piezoelectric properties of langasite family crystals

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The atomic displacements upon isomorphic substitutions in crystals of the langasite family have been analyzed. The thermal parameters are determined and the probability density function of atoms is analyzed. Local potential energy minima are found which can be occupied by atoms under external effects. The contributions of cations in all four independent crystallographic positions and anions in all three such positions to the piezoelectric properties are established. One specific structural feature is the constant (at isomorphic substitutions) or possible (under external effects) but always opposite displacements of two cations along symmetry axis 2. Large cations in eight-vertex polyhedra make the main contribution to the piezoelectric properties. The cations in the tetrahedra on symmetry axis 2 weaken these properties. The cations in the octahedra in the origin of coordinates and in the tetrahedra on symmetry axes 3 only slightly affect the piezoelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Belov, Structure of Ionic Crystals and Metal Phases (Izd-vo AN SSSR, Moscow, 1947) [in Russian].

    Google Scholar 

  2. B. V. Mill, A. V. Butashin, A. M. Ellern, and A. A. Maier, Neorg. Mater. 17(7), 1848 (1981).

    Google Scholar 

  3. ICSD: Inorganic Crystal Structure Database (FIZ Karlsruhe, Germany).

  4. B. V. Mill, Zh. Neorg. Khim. 55(10), 1706 (2010).

    Google Scholar 

  5. A. A. Kaminskii, S. E. Sarkisov, B. V. Mill, and G. G. Khodzhabagyan, Sov. Phys. Dokl. 27(1), 403 (1982).

    ADS  Google Scholar 

  6. O. A. Baturina, B. N. Grechushnikov, A. A. Kaminskii, et al., Sov. Phys. Crystallogr. 32(2), 236 (1987).

    Google Scholar 

  7. A. A. Kaminskii, B. V. Mill, and S. E. Sarkisov, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian], p. 197.

    Google Scholar 

  8. I. A. Andreev, Zh. Tekh. Fiz. 76(6), 758 (2006).

    Google Scholar 

  9. B. V. Mill and Yu. V. Pisarevsky, Proc. 2000 IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA, p. 133.

  10. M. Honal, R. Fachberg, T. Holzheu, et al., Proc. 2000 IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA, p. 133.

  11. E. L. Belokoneva, M. A. Simonov, A. V. Butashin, et al., Sov. Phys. Dokl. 25(5), 954 (1980).

    ADS  Google Scholar 

  12. E. L. Belokoneva and N. V. Belov, Sov. Phys. Dokl. 26(6), 931 (1981).

    ADS  Google Scholar 

  13. E. L. Belokoneva and B. V. Mill, Crystallochemical Systematics of Minerals (Izd-vo MGU, Moscow, 1985) [in Russian], p. 140.

    Google Scholar 

  14. E. L. Belokoneva, S. Yu. Stefanovich, Yu. V. Pisarevsky, et al., Zh. Neorg. Khim. 45(11), 1786 (2000).

    Google Scholar 

  15. H. Takeda, K. Sugiyama, K. Inaba, et al., Jpn. J. Appl. Phys., Part 2 36, L919 (1997).

    Article  Google Scholar 

  16. V. N. Molchanov, B. A. Maksimov, D. F. Kondakov, et al., JETP Lett. 74(4), 222 (2001).

    Article  ADS  Google Scholar 

  17. B. A. Maksimov, V. N. Molchanov, B. V. Mill, et al., Crystallogr. Rep. 50(5), 751 (2005).

    Article  ADS  Google Scholar 

  18. B. V. Mill, A. A. Klimenkova, B. A. Maksimov, et al., Crystallogr. Rep. 520(5), 785 (2007).

    Article  ADS  Google Scholar 

  19. A. P. Dudka, B. V. Mill, and Yu. V. Pisarevsky, Crystallogr. Rep. 54(4), 558 (2009).

    Article  ADS  Google Scholar 

  20. A. P. Dudka, Yu. V. Pisarevsky, V. I. Simonov, and B. V. Mill’, Crystallogr. Rep. 55(5), 748 (2010).

    Article  ADS  Google Scholar 

  21. T. Iwataki, H. Oshato, K. Tanaka, et al., J. Eur. Ceram. Soc. 21, 1409 (2001).

    Article  Google Scholar 

  22. N. Araki, H. Oshato, K. Kakimoto, et al., J. Eur. Ceram. Soc. 27, 4099 (2007).

    Article  Google Scholar 

  23. H. Graafsma, J. Appl. Crystallogr. 25, 372 (1992).

    Article  Google Scholar 

  24. S. V. Gorfman, O. Schmidt, U. Pietsch, et al., Z. Kristallogr. 222, 396 (2007).

    Article  Google Scholar 

  25. S. V. Gorfman, V. G. Tsirelson, and U. Pietsch, Acta Crystallogr. A 61, 387 (2005).

    Article  ADS  Google Scholar 

  26. S. V. Gorfman, V. G. Tsirelson, and A. Pucher, Acta Crystallogr. A 62, 1 (2006).

    Article  ADS  Google Scholar 

  27. A. Katrusiak, Acta Crystallogr. A 64, 135 (2008).

    Article  ADS  Google Scholar 

  28. O. Schmidt, S. V. Gorfman, L. Bohaty, et al., Acta Crystallogr. A 65, 267 (2009).

    Article  ADS  Google Scholar 

  29. A. Dudka, J. Appl. Crystallogr. 43, 1440 (2010).

    Article  Google Scholar 

  30. A. P. Dudka and B. V. Mill, Crystallogr. Rep. 56(3), 443 (2011).

    Article  ADS  Google Scholar 

  31. A. P. Dudka, R. Chitra, R. R. Choudkhuri, et al., Crystallogr. Rep. 55(6), 1060 (2010).

    Article  ADS  Google Scholar 

  32. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. (in press).

  33. A. Dudka, J. Appl. Crystallogr. 41, 83 (2008).

    Article  Google Scholar 

  34. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007).

    Article  MathSciNet  Google Scholar 

  35. A. P. Dudka and V. A. Strel’tsov, Sov. Phys. Crystallogr. 37(2), 269 (1992).

    Google Scholar 

  36. A. P. Dudka, M. Kh. Rabadanov, and A. A. Loshmanov, Sov. Phys. Crystallogr. 34(4), 490 (1989).

    Google Scholar 

  37. A. P. Dudka, Crystallogr. Rep. 50(6), 1068 (2005).

    Article  ADS  Google Scholar 

  38. A. Dudka, J. Appl. Crystallogr. 42, 354 (2009).

    Article  Google Scholar 

  39. A. Dudka, J. Appl. Crystallogr. 43, 27 (2010).

    Article  Google Scholar 

  40. A. P. Dudka, Crystallogr. Rep. 47(1), 145 (2002).

    Article  ADS  Google Scholar 

  41. P. J. Becker and P. Coppens, Acta Crystallogr. A 30, 129 (1974).

    Article  ADS  Google Scholar 

  42. Y. Le Page and E. J. Gabe, J. Appl. Crystallogr. 11, 254 (1978).

    Article  Google Scholar 

  43. W. C. Hamilton, Acta Crystallogr. 18, 502 (1965).

    Article  Google Scholar 

  44. S. C. Abrahams and E. T. Keve, Acta Crystallogr. A 27, 157 (1971).

    Article  ADS  Google Scholar 

  45. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  46. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystallography (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  47. J. Chen, Y. Zheng, H. Kong, and E. Shi, Appl. Phys. Lett. 89, 012901 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dudka.

Additional information

Dedicated to the memory of N.V. Belov

Original Russian Text © A.P. Dudka, V.I. Simonov, 2011, published in Kristallografiya, 2011, Vol. 56, No. 6, pp. 1047–1053.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudka, A.P., Simonov, V.I. Structural conditionality of the piezoelectric properties of langasite family crystals. Crystallogr. Rep. 56, 980–985 (2011). https://doi.org/10.1134/S1063774511060058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774511060058

Keywords

Navigation