Skip to main content
Log in

Structure and properties of antimony-doped lanthanum molybdate La2Mo2O9

  • Structure Of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Polycrystalline samples of the composition La2Mo2 − x Sb x O9 − y , where 0 ≤ x ≤ 0.05, were prepared by solid-phase synthesis. Single crystals of La2Mo1.96Sb0.04O8.17 were obtained by spontaneous crystallization from flux. The structure of the metastable β ms phase of this compound was determined at room temperature by X-ray diffraction. It was found that the La, Mo, and O1 atoms are displaced from the threefold axis on which they are located in the high-temperature β phase. It was shown that molybdenum atoms in the crystal structure are partially replaced by antimony atoms, which are located on the threefold axis. In antimony-doped crystals, lanthanum atoms partially return to the site on the threefold axis and the coordination environment of molybdenum cations becomes more ordered, thus facilitating the stabilization of the cubic phase at room temperature. Calorimetric measurements (DSC) showed that the introduction of Sb as the dopant into the La2Mo2O9 structure leads to a decrease in the temperature of the α → β phase transition from 570 to 520°C and to the partial suppression of this transition. The temperature behavior of the conductivity confirms the DSC data. Thus, doping with Sb contributes to the stabilization of the cubic phase at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lacorre, F. Goutenoire, O. Bohnke, et al., Nature 404, 856 (2000).

    Article  ADS  Google Scholar 

  2. F. Goutenoire, O. Isnard, R. Retoux, et al., Chem. Mater. 12, 2575 (2000).

    Article  Google Scholar 

  3. V. I. Voronkova, V. K. Yanovskii, and E. P. Kharitonova, Kristallografiya 50(5), 943 (2005) [Crystallogr. Rep. 50 (5), 874 (2005)].

    Google Scholar 

  4. A. Selmi, G. Corbel, S. Kojikian, et al., Eur. J. Inorg. Chem., 1813 (2008).

  5. S. A. Hayward and S. A. T. Redfern, J. Phys.: Condens. Matter 16, 3571 (2004).

    Article  ADS  Google Scholar 

  6. F. Goutenoire, O. Isnard, E. Suard, et al., J. Chem. Mater. 11, 119 (2001).

    Article  Google Scholar 

  7. D. Marrero-Lopez, D. Perez-Coll, J. C. Ruiz-Morales, et al., Electrochim. Acta 52, 5219 (2007).

    Article  Google Scholar 

  8. C. Li, X. P. Wang, and D. Li, Mater. Res. Bull. 42, 1077 (2007).

    Article  Google Scholar 

  9. I. R. Marozau, A. L. Shaula, V. V. Kharton, et al., Mater. Res. Bull. 40, 361 (2005).

    Article  Google Scholar 

  10. V. I. Voronkova, E. P. Kharitonova, and A. E. Krasilnikova, Phys. Status Solidi A, No 11. P. 2564 (2009).

  11. O. A. Alekseeva, N. I. Sorokina, I. A. Verin, et al., Kristallografiya 54(1), 26 (2009) [Crystallogr. Rep. 54 (1), 19 (2009)].

    ADS  Google Scholar 

  12. I. R. Evans, J. A. K. Howard, and J. S. O. Evans, Chem. Mater. 17, 4074 (2005).

    Article  Google Scholar 

  13. P. Lacorre, A. Selmi, G. Corbel, et al., Inorg. Chem. 45, 627 (2006).

    Article  Google Scholar 

  14. L. Malavasi, H. J. Kim, S. J. L. Billinge, et al., J. Am. Chem. Soc. 129, 6903 (2007).

    Article  Google Scholar 

  15. C. J. Hou, Y. D. Li, P. J. Wang, et al., Phys. Rev. B 76, 014 104 (2007).

    Google Scholar 

  16. C. Tealdi, L. Malavasi, C. Ritter, et al., J. Solid State Chem. 181, 603 (2008).

    Article  ADS  Google Scholar 

  17. O. A. Alekseeva, I. A. Verin, N. I. Sorokina, et al., Kristallografiya 55(4), 626 (2010) [Crystallogr. Rep. 55 (4), 583 (2010)].

    Google Scholar 

  18. Xcalibur CCD System, CrysAlisPro Software System, Version 1.2003 (Oxford Diffraction Ltd., 2003).

  19. V. Petricek and M. Dusek, JANA2000. The Crystallographic Computing System (Institute of Physics, Prague, 2000).

    Google Scholar 

  20. P. J. Becker and P. Coppens, Acta Crystallogr. A 30, 129 (1974).

    Article  ADS  Google Scholar 

  21. V. I. Voronkova, E. P. Kharitonova, and A. E. Krasilnikova, Kristallografiya 55(2), 306 (2010) [Crystallogr. Rep. 55 (2), 253 (2010)].

    ADS  Google Scholar 

  22. P. Lacorre, F. Goutenoire, F. Altorfer, et al., Adv. Sci. Technol. 33, 737 (2003).

    Google Scholar 

  23. S. Georges, F. Goutenoire, F. Altorfer, et al., Solid State Ionics 161, 231 (2003).

    Article  Google Scholar 

  24. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Alekseeva.

Additional information

Original Russian Text © O.A. Alekseeva, I.A. Verin, N.I. Sorokina, E.P. Kharitonova, V.I. Voronkova, 2011, published in Kristallografiya, 2011, Vol. 56, No. 2, pp. 470–477.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseeva, O.A., Verin, I.A., Sorokina, N.I. et al. Structure and properties of antimony-doped lanthanum molybdate La2Mo2O9 . Crystallogr. Rep. 56, 435–442 (2011). https://doi.org/10.1134/S1063774511020039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774511020039

Keywords

Navigation