Skip to main content
Log in

Physical Properties of Ca-Doped Double Perovskite La2NiMnO6

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Samples of double perovskite manganese La2−xCaxNiMnO6 (x = 0, 0.05, 0.15, 0.2) are prepared by a traditional solid-state reaction. X-ray diffraction patterns show that four samples all exhibit a good uniform single phase and have perovskite crystal structures. From the temperature dependence of the magnetization in a 5 mT magnetic field (M–T) and the field dependence of the magnetization near the Curie temperature (M–H) for La2−xCaxNiMnO6 (x = 0, 0.05, 0.15, 0.2), the ferromagnetism of the samples is weakened, while the antiferromagnetism is enhanced with Ca doping. Hysteresis loops at 2 K, enlarged views of the low-field hysteresis loops at 2 K under a field cooling process with a cooling field of 1T and Raman spectra at room temperature for La2−xCaxNiMnO6 (x = 0, 0.05, 0.15, 0.2) show that when the Ca doping amount is x = 0.05, compared with La2NiMnO6, the antisite disorder degree of the system is almost the same, but the number of antiphase boundaries increases. With further Ca doping, the antisite disorders and numbers of antisite defects and antiferromagnetic antiphase boundaries increase, simultaneously strengthening the enhancement in the antiferromagnetic coupling. In addition, as the Ca doping increases, the upward deviation of the temperature-dependent χ−1 ~ T for bulk La2−xCaxNiMnO6 (LCNMO) from the Curie–Weiss law becomes more obvious, which shows that Ca doping enhances the long-range ferromagnetic order, antiferromagnetic clusters increase, and long-range ferromagnetic order dominates the magnetic behaviour near the ferromagnetic transition point. Finally, we discuss the magnetic entropy and electrical changes of four samples and confirm that Ca doping causes the systems to undergo a weak first-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.J. Liu, Structural and Physical properties of double perovskite Ln2Ni/CoMnO6. Ph. D. Dissertation (University of Science and Technology of China, Hefei, 2016) (in Chinese)

  2. X.J. Wang, Y. Sui, Y. Li, L. Li, X.Q. Zhang, Y. Wang, Z.G. Liu, W.H. Su, J.K. Tang, Phys. Lett. 95, 252502 (2009)

    Google Scholar 

  3. S.M. Zhou, Y.Q. Guo, J.Y. Zhao, S.Y. Zhao, L. Shi, Appl. Phys. Lett. 96, 262507 (2010)

    Article  ADS  Google Scholar 

  4. S.Y. Zhao, L. Shi, S.M. Zhou, J.Y. Zhao, H.P. Yang, Y.Q. Guo, Appl. Phys. 106, 123901 (2009)

    Article  Google Scholar 

  5. Y.Q. Guo, L. Shi, S.M. Zhou, J.Y. Zhao, C.L. Wang, W.J. Liu, S.Q. Wei, J. Phys. D Appl. Phys. 46, 175302 (2013)

    Article  ADS  Google Scholar 

  6. W.Q. Wang, J.Y. Xiang, K.H. Wu, S.L. Wan, J.J. Zhao, Y. Lu, J. Rare Earths 36(06), 39–44 (2015). (in Chinese)

    Google Scholar 

  7. L.M. He, Y. Ji, Y. Lu, H.Y. Wu, X.F. Zhang, J.J. Zhao, Acta Phys. Sin. 14(63), 329–333 (2014). (in Chinese)

    Google Scholar 

  8. S.L. Wan, L.M. He, J.Y. Xiang, Z.G. Wang, R. Xing, X.F. Zhang, Y. Lu, J.J. Zhao, Acta Phys. Sin. 23(63), 336–340 (2014). (in Chinese)

    Google Scholar 

  9. P.R. Mandal, T.K. Nath, Mater. Res. Express 2, 066101 (2015)

    Article  ADS  Google Scholar 

  10. H.Z. Guo, A. Gupta, T.G. Calvarese, M.A. Subramanian, Appl. Phys. Lett. 89, 262503 (2006)

    Article  ADS  Google Scholar 

  11. A. Dutta, N. Gayathri, R. Ranganathan, Phys. Rev. B 68, 054432 (2003)

    Article  ADS  Google Scholar 

  12. M. García-Hernández, J.L. Martínez, M.J. Martínez-Lope, M.T. Casais, J.A. Alonso, Phys. Rev. Lett. 86, 2443 (2001)

    Article  ADS  Google Scholar 

  13. D.D. Sarma, S. Ray, K. Tanaka, M. Kobayashi, A. Fujimori, P. Sanyal, H.R. Krishnamurthy, C. Dasgupta, Phys. Rev. Lett. 98, 157205 (2007)

    Article  ADS  Google Scholar 

  14. H.Z. Guo, J. Burgess, E. Ada, S. Street, A. Gupta, M.N. Iliev, A.J. Kellock, C. Magen, M. Varela, S.J. Pennycook, Phys. Rev. B 77, 174423 (2008)

    Article  ADS  Google Scholar 

  15. K.D. Truong, J. Laverdière, M.P. Singh, S. Jandl, P. Fournier, Phys. Rev. B 76, 132413 (2007)

    Article  ADS  Google Scholar 

  16. N.S. Rogado, J. Li, W. Arthur, M.A.Subramanian Sleight, Adv. Mater. 17, 2225–2227 (2005)

    Article  Google Scholar 

  17. R.I. Dass, J.Q. Yan, J.B. Goodenough, Phys. Rev. B 68, 064415 (2003)

    Article  ADS  Google Scholar 

  18. M. Hashisaka, D. Kan, A. Masuno, M. Takano, Y. Shimakawa, Appl. Phys. Lett. 89, 032504 (2006)

    Article  ADS  Google Scholar 

  19. H. Guo, J. Burgess, S. Street, A. Gupta, Appl. Phys. Lett. 89, 022509 (2006)

    Article  ADS  Google Scholar 

  20. J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  21. J.B. Goodenough, Phys. Chem. Solids 6, 287 (1958)

    Article  ADS  Google Scholar 

  22. J. Kanamori, Phys. Chem. Solids 10, 87 (1959)

    Article  ADS  Google Scholar 

  23. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  24. X.D. Sun, B. Xv, H.Y. Wu, F.Z. Cao, J.J. Zhao, Y. Lu, Acta Phys. Sin. 66(15), 245–252 (2017). (in Chinese)

    Google Scholar 

  25. S. Zemni, M. Bassaoui, J. Dhahri, H. Vicent, M. Oumezzine, Mater. Lett. 63, 489 (2009)

    Article  Google Scholar 

  26. R. Nirmala, Y. Mudryk, Phys. Rev. B 76, 014407 (2007)

    Article  ADS  Google Scholar 

  27. D.H. Wang, H.D. Liu, S.L. Tang, T. Tang, J.F. Wen, Y.W. Du, Solid State Commun. 121(4), 199–202 (2002)

    Article  ADS  Google Scholar 

  28. Q.Y. Shi, S.J. Xv, J.H. Ju, Z.D. Han, B. Qian, X.Y. Jiang, J. Changshu Inst. Technol. (Nat. Sci.) (2), 59–62, 95 (2015) (in Chinese)

  29. H.Q. Yun, R. Xing, X.D. Sun, Y.B. Sun, Y. Lu, J.J. Zhao, Chin. J. Low Temp. Phys. 39(02), 11–15 (2017)

    Google Scholar 

  30. Q. GuoY, L. Shi, S.M. Zhou, J.Y. Zhao, W.J. Liu, Appl. Phys. Lett. 102, 222401 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11164019, 51562032, 61565013), Science Foundation of Inner Mongolia, China (Grant No. 2015MS0109), Inner Mongolia Science Research Fund in Higher Education Institutions, China (NJZZ11166, NJZY12202, NJZY16237), Production and Research Joint Program of Baotou Science and Technology Bureau, China (2014X1014-01, 2015Z2011), and Postgraduate Scientific Research Innovation Program of Inner Mongolia, China (S201710127(S01)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Jian-Jun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, W., Hong-Ye, W., Ru, X. et al. Physical Properties of Ca-Doped Double Perovskite La2NiMnO6. J Low Temp Phys 196, 423–441 (2019). https://doi.org/10.1007/s10909-019-02188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02188-5

Keywords

Navigation