Skip to main content
Log in

Simulation of ion transport in layered cuprate La2SrCu2O6

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Oxygen diffusion in layered cuprate La2SrCu2O6 has been simulated by the molecular dynamics method in the temperature range of 300–2500 K. The lattice is found to transform at temperatures above 1550 K; this transformation is accompanied by a change in the pair correlation functions. The abrupt change in the oxygen diffusion coefficient in the range of 1500–1550 K may indicate the presence of a phase transition to the superionic state. The motion of oxygen anions could be traced at the microscopic level. It has been proven for the first time that the La2SrCu2O6 crystal lattice allows, along with displacements of O1 ions within the CuO2 layer, their migration from the crystallographic positions to the intermediate unoccupied O3 positions. The motion of O2 anions is also fairly complicated: they move not only in their layer over the O2 positions but they also jump to the neighboring layer to occupy the O1 positions. The oxygen diffusion coefficient in layered cuprate La2SrCu2O6 exceeds that in cuprates with perovskite structure and structure of the K2NiF4 type (at the same temperatures), which indicates that this material has good prospects for electrodes with mixed ionic-electronic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Antipov, L. N. Lykova, and L. M. Kovba, Zh. Vses. Khim. O-va im. D. I. Mendeleeva 34(4), 458 (1989).

    Google Scholar 

  2. J. B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004).

    Article  ADS  Google Scholar 

  3. R. H. Mitchell, Perovskites: Modern and Ancient (Almaz Press, Thunder Bay, 2002), p. 82.

    Google Scholar 

  4. Ho-Chieh Yu and Kuan-Zong Fung, J. Power Sources 133, 162 (2004).

    Article  Google Scholar 

  5. G. N. Mazo, S. N. Savvin, A. M. Abbakumov, et al., Élektrokhimiya 43(4), 459 (2007).

    Google Scholar 

  6. S. N. Savvin, G. N. Mazo, and A. K. Ivanov-Schitz, Defect Diffusion Forum 242–244, 27 (2005).

    Article  Google Scholar 

  7. S. N. Savvin, G. N. Mazo, and A. K. Ivanov-Schitz, Kristallografiya 53(2), 317 (2008) [Crystallogr. Rep. (Engl. Transl.), 53 (2), 291 (2008)].

    Google Scholar 

  8. A. K. Ivanov-Schitz, G. N. Mazo, S. N. Savvin, et al., Élektrokhimiya 44(12), 1458 (2008).

    Google Scholar 

  9. M. S. Islam, J. Mater. Chem. 10, 1027 (2000).

    Article  Google Scholar 

  10. G. Balducci, M. S. Islam, J. Kaspar, et al., Chem. Mater. 15, 3781 (2003).

    Article  Google Scholar 

  11. M. S. Islam, Solid State Ionics 154–155, 75 (2002).

    Article  MathSciNet  Google Scholar 

  12. M. S. Islam and R. A. Davies, J. Mater. Chem. 14, 86 (2004).

    Article  Google Scholar 

  13. E. Kendrick, J. Kendrick, K. S. Knight, et al., Nature Materials 6, 871 (2007).

    Article  ADS  Google Scholar 

  14. W. Smith, I. T. Todorov, and M. Leslie, Z. Kristallogr. 220, 563 (2005).

    Article  Google Scholar 

  15. V. N. Popov, J. Phys.: Condens. Matter 7, 1625 (1995).

    Article  ADS  Google Scholar 

  16. S. L. Chaplot, Phys. Rev. B 42, 2149 (1990).

    Article  ADS  Google Scholar 

  17. S. L. Chaplot, W. Reichardt, L. Pintschovius, and N. Pyka, Phys. Rev. B 52, 7230 (1995).

    Article  ADS  Google Scholar 

  18. H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gusteren, et al., J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

  19. V. Caignaert, N. Nguyen, and B. Raveau, Mat. Res. Bull. 25, 199 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ivanov-Schitz.

Additional information

Original Russian Text © M.Z. Galin, G.N. Mazo, A.K. Ivanov-Schitz, 2010, published in Kristallografiya, 2010, Vol. 55, No. 2, pp. 276–285.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galin, M.Z., Mazo, G.N. & Ivanov-Schitz, A.K. Simulation of ion transport in layered cuprate La2SrCu2O6 . Crystallogr. Rep. 55, 262–271 (2010). https://doi.org/10.1134/S1063774510020185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774510020185

Keywords

Navigation