Skip to main content
Log in

Computer modeling of the local structure, mixing properties, and stability of binary oxide solid solutions with corundum structure

  • Crystal Chemistry
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An original technique of computer modeling of substitutional solid solutions has been applied to Al2O3-Cr2O3, Al2O3-Fe2O3, and Fe2O3-Cr2O3 binary systems. The parameters of semiempirical interatomic potentials were optimized using the experimentally studied structural, elastic, and thermodynamic properties of pure components. Among point defects, the most energetically favorable ones for all three oxides are Schottky vacancy quintets. To model (M 1x M 21 − x )2O3 solid solutions, 4 × 4 × 1 disordered supercells with M 1: M 2 cation ratios of 1: 5, 1: 2, 1: 1, 2: 1, and 5: 1 have been constructed in the cation sublattice containing 192 atoms. The mixing enthalpy and volume, interaction parameters, bulk moduli, and vibrational entropy were found by minimizing the interatomic interaction energy in supercells with the symmetry P1. Calculations of the Gibbs energy made it possible to estimate the fields of stability of the Al2O3-Cr2O3 and Al2O3-Fe2O3 solid solutions; these estimates were compared with the experimental data. Histograms of M-M, M-O, and O-O interatomic distances were constructed and the local structure was analyzed for the Al1.0Cr1.0O3, Al1.0Fe1.0O3, and Fe1.0Cr1.0O3 compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Urusov, T. G. Petrova, and N. N. Eremin, Dokl. Akad. Nauk 387, 191 (2002).

    MATH  Google Scholar 

  2. V. S. Urusov, T. G. Petrova, and N. N. Eremin, Dokl. Akad. Nauk 392, 1 (2003).

    Google Scholar 

  3. N. N. Eremin, R. Deyanov, and V. S. Urusov, in Proceedings of the International Conference “Spectroscopy and Crystal Chemistry of Minerals,” Yekaterinburg, Russia, 2007, p. 40.

  4. K. T. Jacob, J. Electrochem. Soc. 125, 175 (1978).

    Article  Google Scholar 

  5. N. D. Chatterjee, et al., Am. Mineral. 67, 725 (1982).

    Google Scholar 

  6. T. Grygar et al., Ceramics, Silikaty 47(1), 32 (2003).

    Google Scholar 

  7. S. Music et al., J. Mater. Sci. 31, 4067 (1996).

    Article  Google Scholar 

  8. Y. Murakami, A. Sawata, and Y. Tsuru, J. Mater. Sci. 34, 951 (1999).

    Article  Google Scholar 

  9. J. Majzlan, A. Navrotsky, and B. J. Evans, Phys. Chem. Miner. 29, 515 (2002).

    Article  ADS  Google Scholar 

  10. A. Feenstra, S. Sämann, and B. Wunder, J. Petrol. 46(9), 1881 (2005).

    Article  Google Scholar 

  11. J. D. Gale and A. L. Rohl, Mol. Simul. 29(5), 291 (2003).

    Article  MATH  Google Scholar 

  12. N. N. Eremin, R. Z. Deyanov, and V. S. Urusov, Fiz. Khim. Stekla 34(1), 11 (2008).

    Google Scholar 

  13. V. S. Urusov, N. N. Eremin, T. G. Petrova, and R. A. Talis, in Proceedings of the IV National Conference on Crystal Chemistry, Chernogolovka, Russia, 2006, p. 238.

  14. C. R. A. Catlow, J. D. Gale, and R. W. Grimes, J. Solid State Chem. 106, 13 (1993).

    Article  ADS  Google Scholar 

  15. J. D. Gale, C. R. A. Catlow, and W. C. Mackrodt, Mod. Simul. Mater. Sci. Eng. 1, 73 (1992).

    Article  ADS  Google Scholar 

  16. R. A. Robie and B. S. Hemingway, U. S. Geological Survey Bulletin no. 2131 (U. S. Government Printing Office, Washington, 1995).

    Google Scholar 

  17. T. Goto, S. Yamamoto, I. Ohno, and O. L. Anderson, J. Geophys. Res. 94, 7588 (1989).

    Article  ADS  Google Scholar 

  18. N. Ishimata, T. Miyata, J. Minato, et al., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 228 (1980).

    Article  Google Scholar 

  19. L. Finger and R. M. Hazen, J. Appl. Phys. 51, 5362 (1980).

    Article  ADS  Google Scholar 

  20. M. Iu. Antipin, V. G. Tsirelson, M. P. Flugge, et al., Dokl. Akad. Nauk SSSR 281, 845 (1985) [Sov. Phys. Dokl. 30, 306 (1985)].

    Google Scholar 

  21. G. J. Dienis, D. O. Welch, C. R. Fisher, et al., Phys. Rev. B: Solid State 11, 3060 (1975).

    ADS  Google Scholar 

  22. C. R. A. Catlow, R. James, W. C. Mackrodt, and R. F. Stewart, Phys. Rev. B: Condens. Matter 25, 1006 (1992).

    ADS  Google Scholar 

  23. P. W. M. Jacobs and E. A. Kotomin, J. Solid State Chem. 106, 27 (1993).

    Article  ADS  Google Scholar 

  24. S. K. Mohapatra and F. A. Kroger, J. Am. Ceram. Soc. 61, 106 (1978).

    Article  Google Scholar 

  25. V. S. Urusov, V. L. Tauson, and V. V. Akimov, Geochemistry of Solids (GEOS, Moscow, 1997) [in Russian].

    Google Scholar 

  26. V. S. Urusov, Theoretical Crystallochemistry (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Eremin.

Additional information

Original Russian Text © N.N. Eremin, R.A. Talis, V.S. Urusov, 2008, published in Kristallografiya, 2008, Vol. 53, No. 5, pp. 802–810.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremin, N.N., Talis, R.A. & Urusov, V.S. Computer modeling of the local structure, mixing properties, and stability of binary oxide solid solutions with corundum structure. Crystallogr. Rep. 53, 755–763 (2008). https://doi.org/10.1134/S1063774508050052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774508050052

PACS numbers

Navigation