Skip to main content
Log in

Simulation of the local structure, mixing properties, and stability of Ca x Sr1 − x CO3 solid solutions by the interatomic potential method

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Strontianite (SrCO3)-aragonite (CaCO3) solid solutions have been simulated by the interatomic potential method. The composition dependences of the unit cell parameters, the unit cell volume, and bulk modulus have been constructed. It has been shown that the volume of the unit cell and bulk modulus show small negative deviations from additivity. The local structure of solid solutions has been analyzed. It has been established that the enthalpy of mixing is positive and, for the equimolar composition, reaches a maximum of 2.45 kJ/mol. Based on the composition dependences of the Gibbs free energy for the temperature range of 300–650 K, the solvus of the system has been constructed. According to the obtained data, the solubility of aragonite in strontianite under ambient conditions is 5.5 mol %, while that of strontianite in aragonite is 2.8 mol %. The miscibility gap of the system disappears at around 450 K. The calculated results have been compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Holland, M. Borcsik, J. Munoz, and U. M Oxburgh, Geochim. Cosmochim. Acta 27, 957 (1963).

    Article  ADS  Google Scholar 

  2. L. N. Plummer and N. Busenberg, Geochim. Cosmochim. Acta 51, 1393 (1987).

    Article  ADS  Google Scholar 

  3. W. H. Casey, L. Chai, A. Navrotsky, and P. A. Rock, Geochim. Cosmochim. Acta 60, 933 (1996).

    Article  ADS  Google Scholar 

  4. A. Lucas-Girot, O. Hernandez, and H. Oudadesse, Mater. Res. Bull. 42, 1061 (2007).

    Article  Google Scholar 

  5. S. E. Ruiz-Hernandez, R. Grau-Crespo, A. R. Ruiz-Salvador, and N. H. De Leeuw, Geochim. Cosmochim. Acta 74, 1320 (2010).

    Article  ADS  Google Scholar 

  6. D. A Kulik, V. L. Vinograd, N. Paulsen, and B. Winkler, Phys. Chem. Earth 35, 217 (2010).

    Article  Google Scholar 

  7. W. H. Casey, P. A. Rock, J. B. Chung, E. M. Walling, and M. K. McBeath, Am. J. Sci. 296, 1 (1996).

    Article  Google Scholar 

  8. J. A Speer and M. L. Hensley-Dunn, Am. Mineral. 61, 1001 (1976).

    Google Scholar 

  9. J. M. Alia, Y. D. de Mera, H. G. M. Edwards, P. G. Martin, and S. L. Andres, Spectrochim. Acta, Part A 53, 2347 (1997).

    Article  ADS  Google Scholar 

  10. J. D. Gale, J. Chem. Soc., Faraday Trans. 93, 629 (1997).

    Article  Google Scholar 

  11. J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).

    Article  MATH  Google Scholar 

  12. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

    Article  ADS  Google Scholar 

  13. D. K. Fisler, J. D. Gale, and R. T. Cygan, Am. Mineral. 85, 217 (2000).

    Google Scholar 

  14. T. D. Archer, S. E. A. Birse, M. T. Dove, S. A. T. Redfern, J. D. Gale, and R. T. Cygan, Phys. Chem. Miner. 30, 416 (2003).

    Article  ADS  Google Scholar 

  15. A. Pavese, M. Catti, G. D. Price, and R. A. Jackson, Phys. Chem. Miner. 19, 80 (1992).

    Article  ADS  Google Scholar 

  16. M. Catti, A. Pavese, and G. D. Gale, Phys. Chem. Miner. 19, 472 (1993).

    Article  ADS  Google Scholar 

  17. M. T. Dove, B. Winkler, M. Leslie, M. J. Harris, and E. K. H. Salje, Am. Mineral. 77, 244 (1996).

    Google Scholar 

  18. V. S. Urusov and N. N. Eremin, Atomistic Computer Simulation of the Structure and Properties of Inorganic Crystals and Minerals, Their Defects, and Solid Solutions (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  19. J. W. Morse and F. T. Mackenzie, Geochemistry of Sedimentary Carbonates (Elsevier, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dudnikova.

Additional information

Original Russian Text © V.B. Dudnikova, V.S. Urusov, N.N. Eremin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 6, pp. 1092–1097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, V.B., Urusov, V.S. & Eremin, N.N. Simulation of the local structure, mixing properties, and stability of Ca x Sr1 − x CO3 solid solutions by the interatomic potential method. Phys. Solid State 57, 1108–1113 (2015). https://doi.org/10.1134/S1063783415060104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415060104

Keywords

Navigation