Skip to main content
Log in

Three-dimensional organization of three-domain copper oxidases: A review

  • Structure of Macromolecular Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

“Blue” copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. McMillin and M. K. Eggleston, in Multi-Copper Oxidases, Ed. by A. Messerschmidt (World Scientific, Singapore, 1997), Chapter 5, p. 129.

    Google Scholar 

  2. L. G. Ryden and L. T. Hunt, J. Mol. Evol. 36, 41 (1993).

    Article  Google Scholar 

  3. K. Nakamura and N. Go, Cell. Mol. Life Sci. 62(18), 2050 (2005); (Birkhüser, Basel, 2005), p. 1.

    Article  Google Scholar 

  4. E. T. Adman and M. E. P. Murphy, in Handbook of Metalloproteins, Ed. by A. Messerschmidt, R. Huber, T. Poulos, and K. Wieghardt (Wiley, New York, 2001), Vol. 2, p. 1381.

    Google Scholar 

  5. K. Nakamura, T. Kawabata, K. Yura, and N. Go, FEBS Lett. 553, 239 (2003).

    Article  Google Scholar 

  6. R. Malkin and B. G. Malmström, Adv. Enzymol. Relat. Areas Mol. Biol. 33, 177 (1970).

    Article  Google Scholar 

  7. B. Reinhammar, Copper Proteins Copper Enzymes 3, 1 (1984).

    Google Scholar 

  8. E. I. Solomon, M. J. Baldwin, and M. D. Lowery, Chem. Rev. 92, 521 (1992).

    Article  Google Scholar 

  9. W. Kaim and J. Rall, Angew. Chem., Int. Ed. Engl. 35, 43 (1996).

    Article  Google Scholar 

  10. M. D. Allendorf, D. J. Spira, and E. I. Solomon, Proc. Natl. Acad. Sci. USA 82, 3063 (1985).

    Article  ADS  Google Scholar 

  11. E. Agostinelli, L. Cervoni, A. Giartosio, and L. Morpurgo, Biochem. J. 306, 697 (1995).

    Google Scholar 

  12. B. G. Malmström, Arch. Biochem. Biophys. 280, 233 (1990).

    Article  Google Scholar 

  13. J. A. Farrar, A. J. Thomson, M. R. Cheesman, et al., FEBS Lett. 294, 11 (1991).

    Article  Google Scholar 

  14. R. M. Wynn, H. K. Sarkar, R. A. Holwerda, and D. B. Knaff, FEBS Lett. 156, 23 (1983).

    Article  Google Scholar 

  15. E. I. Solomon, U. M. Sundaram, and T. E. Machonkin, Chem. Rev. 96, 2563 (1996).

    Article  Google Scholar 

  16. N. T. Dittmer, R. J. Suderman, H. Jiang, et al., Insect Biochem. Mol. Biol. 34, 29 (2004).

    Article  Google Scholar 

  17. N. M. Parkinson, C. M. Conyers, J. N. Keen, et al., Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 134, 513 (2003).

    Article  Google Scholar 

  18. G. Alexandre and I. B. Zhulin, Trends Biotechnol. 18, 41 (2000).

    Article  Google Scholar 

  19. H. Claus, Micron 35, 93 (2004).

    Article  Google Scholar 

  20. H. Claus, Arch. Microbiol. 179, 145 (2003).

    Google Scholar 

  21. G. A. White and R. M. Krupka, Arch. Biochem. Biophys. 110, 448 (1965).

    Article  Google Scholar 

  22. B. Mondovi, O. Befani, and S. Sabatini, Agents Actions 14, 356 (1984).

    Article  Google Scholar 

  23. H. Itoh, A. Hirota, K. Hirayama, et al., Biosci., Biotechnol., Biochem. 59, 1052 (1995).

    Article  Google Scholar 

  24. T. Nakamura, N. Makino, and Y. Ogura, J. Biochem. (Tokyo, Jpn.) 64, 189 (1968).

    Google Scholar 

  25. A. Marchesini and P. M. H. Kroneck, Eur. J. Biochem. 101, 65 (1979).

    Article  Google Scholar 

  26. L. Avigliano, P. Vecchini, P. Sirianni, et al., Mol. Cell. Biochem. 56, 107 (1983).

    Article  Google Scholar 

  27. M. H. Thuesen, O. Farver, B. Reinhammar, and J. Ulstrup, Acta Chem. Scand. 52, 555 (1998).

    Article  Google Scholar 

  28. A. Messerschmidt, in Handbook of Metalloproteins, Ed. by A. Messerschmidt, R. Huber, T. Poulos, and K. Wieghardt (Wiley, New York, 2001), Vol. 2, p. 1345.

    Google Scholar 

  29. C. Pignocchi, J. M. Fletcher, J. E. Wilkinson, et al., Plant Physiol. 132, 1631 (2003).

    Article  Google Scholar 

  30. H. Asao, K. Yoshida, Y. Nishi, and A. Shinmyo, Biosci., Biotechnol., Biochem. 67, 271 (2003).

    Article  Google Scholar 

  31. M. A. Green and S. C. Fry, Nature (London) 433, 83 (2005).

    Article  ADS  Google Scholar 

  32. A. Messerschmidt, R. Ladenstein, R. Huber, et al., J. Mol. Biol. 224, 179 (1992).

    Article  Google Scholar 

  33. A. Messerschmidt, A. Rossi, R. Ladenstein, et al., J. Mol. Biol. 206, 513 (1989).

    Article  Google Scholar 

  34. A. Messerschmidt, H. Luecke, and R. Huber, J. Mol. Biol. 230, 997 (1993).

    Article  Google Scholar 

  35. A. Messerschmidt, R. Huber, and T. Poulos, in Handbook of Metalloproteins, Ed. by A. Messerschmidt, R. Huber, T. Poulos, and K. Wieghardt (Wiley, New York, 2001).

    Google Scholar 

  36. D. J. Winge, Adv. Protein Chem. 60, 51 (2002).

    Article  Google Scholar 

  37. I. Voskoboinik, J. Camakaris, and J. F. B. Mercer, Adv. Protein Chem. 60, 123 (2002).

    Article  Google Scholar 

  38. L. Banci, and A. Rosato, Acc. Chem. Res. 36, 215 (2003).

    Article  Google Scholar 

  39. Z. H. Lu and M. Solioz, Adv. Protein Chem. 60, 93 (2002).

    Article  Google Scholar 

  40. L. A. Finney and T. V. O’Halloran, Science (Washington) 300, 931 (2003).

    Article  ADS  Google Scholar 

  41. C. Rensing and G. Grass, FEMS Microbiol. Rev. 27, 197 (2003).

    Article  Google Scholar 

  42. M. Solioz and J. V. Stoyanov, FEMS Microbiol. Rev. 27, 183 (2003).

    Article  Google Scholar 

  43. J. S. Cavet, G. P. Borrelly, and N. J. Robinson, FEMS Microbiol. Rev. 27, 165 (2003).

    Article  Google Scholar 

  44. J. de Freitas, H. Wintz, J. H. Kim, et al., BioMetals 16, 185 (2003).

    Article  Google Scholar 

  45. S. K. Singh, G. Grass, C. Rensing, and W. R. Montfort, J. Bacteriol. 186, 7815 (2004).

    Article  Google Scholar 

  46. S. A. Roberts, A. Weichsel, G. Grass, et al., Proc. Natl. Acad. Sci. USA 99, 2766 (2002).

    Article  ADS  Google Scholar 

  47. F. W. Outten, D. L. Huffman, J. A. Hale, and T. V. O’Halloran, J. Biol. Chem. 276, 30 670 (2001).

    Google Scholar 

  48. S. A. Roberts, G. F. Wildner, G. Grass, et al., J. Biol. Chem. 278(34), 31 958 (2003).

  49. D. R. McMillin and M. K. Eggleston, in Multi-Copper Oxidases, Ed. by A. Messerschmidt (World Scientific, Singapore, 1997), Chapter 5, p. 129.

    Google Scholar 

  50. B. Reinhammar, in Copper Proteins and Copper Enzymes, Ed. by R. Lontie (CRC, Boca Raton, FL, United States, 1984), Vol. 3, p. 1.

    Google Scholar 

  51. A. I. Yaropolov, O. V. Skorobogat’ko, S. S. Vartanov, and S. D. Varfolomeev, Appl. Biochem. Biotechnol. 49(3), 257 (1994).

    Article  Google Scholar 

  52. E. Torres and I. Bustos-Jaimes, Appl. Catal., B 46(1), 1 (2003).

    Article  Google Scholar 

  53. H. Claus, G. Faber, and H. König, Appl. Microbiol. Biotechnol. 59(6), 672 (2002).

    Article  Google Scholar 

  54. A. Leonowicz, Cho Nam-Seok, J. Luterek, J. Basic Microbiol. 41,(3–4), 185 (2001).

    Article  Google Scholar 

  55. P. Bajpai, Biotechnol. Prog. 15, 147 (1999).

    Article  Google Scholar 

  56. S. Shleev, J. Tkac, A. Chistenson, et al., Biosens. Bioelectron. 20, 2517 (2005).

    Article  Google Scholar 

  57. A. Christenson, N. Dimcheva, E. E. Ferapontova, et al., Electroanalysis 16(13–14), 1074 (2004).

    Article  Google Scholar 

  58. S. Shleev, J. Tkac, A. Christenson, et al., Biosens. Bioelectron. 20(12), 2517 (2005).

    Article  Google Scholar 

  59. V. Ducros, A. M. Brzozowski, K. S. Wilson, et al., Nat. Struct. Biol. 5, 310 (1998).

    Article  Google Scholar 

  60. V. Ducros, A. M. Brzozowski, K. S. Wilson, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 57, 333 (2001).

    Article  Google Scholar 

  61. K. Piontec, M. Antorini, and T. Choinowski, J. Biol. Chem. 277, 37663 (2002).

    Google Scholar 

  62. A. V. Lyashenko, N. E. Zhukhlistova, E. V. Stepanova, et al., Kristallografiya 51(2), 305 (2006) [Crystallogr. Rep. 51 (2), 278 (2006)].

    Google Scholar 

  63. A. V. Lyashenko, Yu. N. Zhukova, N. E. Zhukhlistova, et al., Kristallografiya 51(5), 870 (2006) [Crystallogr. Rep. 51 (5), 817 (2006)].

    Google Scholar 

  64. A. V. Lyashenko, I. Bento, V. N. Zaitsev, et al., JBIC, J. Biol. Inorg. Chem. 11, 963 (2006).

    Article  Google Scholar 

  65. N. Hakulinen, L. L. Kiiskinen, K. Kruus, et al., Nat. Struct. Biol. 9, 601 (2002).

    Google Scholar 

  66. F. J. Enguita, L. O. Martins, A. O. Henriques, and M. A. Carrondo, J. Biol. Chem. 278, 19 416 (2003).

    Google Scholar 

  67. F. J. Enguita, D. Marcal, L. O. Martins, et al., J. Biol. Chem. 279, 23 472 (2004).

  68. I. Bento, L. O. Martins, G. G. Lopes, et al., Dalton Trans. 21, 3507 (2005).

    Article  Google Scholar 

  69. P. M. Coll, J. M. Fernandez-Abalos, J. R. Villanueva, et al., Appl. Environ. Microbiol. 59, 2607 (1993).

    Google Scholar 

  70. F. Xu, Biochemistry 35, 7608 (1996).

    Article  Google Scholar 

  71. J. Sealey and A. J. Ragauskas, Enzyme Microb. Technol. 23, 422 (1998).

    Article  Google Scholar 

  72. S. Garavaglia, M. T. Cambria, M. Miglio, et al., J. Mol. Biol. 342, 1519 (2004).

    Article  Google Scholar 

  73. M. E. P. Murphy, P. F. Lindley, and E. T. Adman, Protein Sci. 6, 761 (1997).

    Article  Google Scholar 

  74. T. E. Machonkin, L. Quintanar, A. E. Palmer, et al., J. Am. Chem. Soc. 123, 5507 (2001).

    Article  Google Scholar 

  75. B. G. Malmström, B. Reinhammar, and T. Vanngard, Biochim. Biophys. Acta 205, 48 (1970).

    Article  Google Scholar 

  76. F. Xu, R. M. Berka, J. A. Wahleithner, et al., Biochem. J. 334, 63 (1998).

    Google Scholar 

  77. R. Zilhao, M. Serrano, R. Isticato, et al., J. Bacteriol. 186, 1110 (2004).

    Article  Google Scholar 

  78. M. Serrano, R. Zilhao, E. Ricca, et al., J. Bacteriol. 181, 3632 (1999).

    Google Scholar 

  79. L. O. Martins, C. M. Soares, M. M. Pereira, et al., J. Biol. Chem. 277, 18 849 (2002).

    Google Scholar 

  80. T. Bertrand, C. Jolivalt, P. Briozzo, et al., Biochemistry 41, 7325 (2002).

    Article  Google Scholar 

  81. R. Bourbonnais, D. Leech, and M. G. Paice, Biochim. Biophys. Acta 1379, 381 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zhukhlistova.

Additional information

Dedicated to Boris Konstatinovich Vaĭnshteĭn

Original Russian Text © N.E. Zhukhlistova, Yu.N. Zhukova, A.V. Lyashenko, V.N. Zaĭtsev, A. M. Mikhaĭlov, 2008, published in Kristallografiya, 2008, Vol. 53, No. 1, pp. 92–110.

Translated by O. Borovik-Romanova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukhlistova, N.E., Zhukova, Y.N., Lyashenko, A.V. et al. Three-dimensional organization of three-domain copper oxidases: A review. Crystallogr. Rep. 53, 92–109 (2008). https://doi.org/10.1134/S1063774508010124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774508010124

PACS numbers

Navigation