Skip to main content
Log in

Multiwavelength Observations of GRB 181201A and Detection of Its Associated Supernova

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Multicolor photometric observations in the optical band and a comprehensive study in the X-ray, gamma-ray, and radio bands are presented for GRB 181201A and its afterglow. The optical observations began \({\sim}0.5\) day after the burst and lasted almost continuously for \({\sim}24\) days. They were resumed after eight months, which allowed us to determine the contribution of the host galaxy to the measured fluxes and to estimate the related extinction. Such complete coverage of the light curve became possible owing to the coordinated work of a network of nine telescopes worldwide. Convincing evidence of an incipient supernova explosion at the location of the burst source was obtained at the end of the first series of observations. Thus, GRB 181201A became yet another event that confirmed the association of gamma-ray bursts with supernovae. Thirty such events based on photometric observations of burst afterglows were known before it. A comparison of the supernova-induced excess emission in the light curve of the afterglow from GRB 181201A with other events has allowed some of the supernova parameters to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. IRAF (Image Reduction and Analysis Facility), an environment for image reduction and analysis, was developed and maintained by the National Optical Astronomy Observatory (NOAO, Tucson, USA) operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation of the USA, see iraf.noao.edu.

  2. https://www.classic.sdss.org/dr4/algorithms/sdssUBVRI Transform.html#Lupton2005.

  3. A similar distribution, but with a smaller number of SNe was derived by Lu et al. (2018).

  4. The entire set of observational data for the afterglow of GRB 181201A from this telescope has been analyzed for the first time.

  5. The observations at this frequency (37 GHz) complement the radio observations presented by Laskar et al. (2019).

REFERENCES

  1. M. Arimoto, M. Axelsson, and M. Ohno, GCN Circ. 23480, 1 (2018).

  2. S. Arnouts, S. Cristiani, L. Moscardini, S. Matarrese, F. Lucchin, A. Fontana, and E. Giallongo, Mon. Not. R. Astron. Soc. 310, 540 (1999).

    Article  ADS  Google Scholar 

  3. D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, et al., Astrophys. J. 413, 281 (1993).

    Article  ADS  Google Scholar 

  4. G. Bazin, V. Ruhlmann-Kleider, N. Palanque-Delabrouille, J. Rich, E. Aubourg, P. Astier, C. Balland, S. Basa, et al., Astron. Astrophys. 534, A43 (2011).

    Article  Google Scholar 

  5. R. L. Becerra, A. M. Watson, W. H. Lee, N. Fraija, N. R. Butler, J. S. Bloom, J. I. Capone, A. Cucchiara, et al., Astrophys. J. 837, 116 (2017).

    Article  ADS  Google Scholar 

  6. S. Belkin, A. Pozanenko, E. Mazaeva, A. Volnova, and M. Krugov, GCN Circ. 23485, 1 (2018a).

  7. S. Belkin, I. Reva, A. Pozanenko, A. Volnova, E. Mazaeva, A. Kusakin, M. Krugov, and D. Buckley, GCN Circ. 23514, 1 (2018b).

  8. S. Belkin, E. Mazaeva, A. Pozanenko, P. Minaev, A. Volnova, N. Tominaga, S. Blinnikov, D. Chestnov, et al., GCN Circ. 23601, 1 (2019a).

    Google Scholar 

  9. S. Belkin, A. Pozanenko, E. Mazaeva, A. Volnova, P. Minaev, N. Tominaga, S. Blinnikov, D. Chestnov, et al., in Proceedings of the 21st International Conference DAMDID/RCDL-2019, Kazan, Russia, October 15–18, 2019, Ed. by A. Elizarov, B. Novikov, and S. Stupnikov, CEUR-WS 2523, 244 (2019b).

  10. F. B. Bianco, M. Modjaz, M. Hicken, A. Friedman, R. P. Kirshner, J. S. Bloom, P. Challis, G. H. Marion, et al., Astrophys. J. Suppl. Ser. 213, 19 (2014).

    Article  ADS  Google Scholar 

  11. S. I. Blinnikov and O. S. Bartunov, Astrophys. Source Code Lib. 1, 08013 (2011); [ascl:1108.013].

    Google Scholar 

  12. S. I. Blinnikov, R. Eastman, O. S. Bartunov, V. A. Popolitovs, and S. E. Woosley, Astrophys. J. 496, 454 (1998).

    Article  ADS  Google Scholar 

  13. S. I. Blinnikov, F. K. Röpke, E. I. Sorokina, M. Gieseler, M. Reinecke, C. Travaglio, W. Hillebrandt, and M. Stritzinger, Astron. Astrophys. 453, 229 (2006).

    Article  ADS  Google Scholar 

  14. J. Bolmer and P. Schady, GCN Circ. 23486, 1 (2018).

  15. C. Cai, C. K. Li, X. B. Li, G. Li, J. Y. Liao, S. L. Xiong, C. Z. Liu, X. F. Li, et al., GCN Circ. 23491, 1 (2018).

    Google Scholar 

  16. D. Calzetti, L. Armus, R. C. Bohlin, A. L. Kinney, J. Koornneef, and T. Storchi-Bergmann, Astrophys. J. 533, 682 (2000).

    Article  ADS  Google Scholar 

  17. Z. Cano, PhD Theses (Liverpool John Moores Univ., 2012); arXiv:1208.0307.

  18. Z. Cano, D. Bersier, C. Guidorzi, S. Kobayashi, A. J. Levan, N. R. Tanvir, K. Wiersema, P. D’Avanzo, et al., Astrophys. J. 740, 41 (2011a).

    Article  ADS  Google Scholar 

  19. Z. Cano, D. Bersier, C. Guidorzi, R. Margutti, K. M. Svensson, S. Kobayashi, A. Melandri, K. Wiersema, A. Pozanenko, et al., Mon. Not. R. Astron. Soc. 413, 669 (2011b).

    Article  ADS  Google Scholar 

  20. Z. Cano, A. de Ugarte Postigo, A. Pozanenko, N. Butler, C. C. Thöne, C. Guidorzi, T. Krühler, J. Gorosabel, et al., Astron. Astrophys. 568, A19 (2014).

    Article  Google Scholar 

  21. Z. Cano, A. de Ugarte Postigo, D. Perley, T. Krühler, R. Margutti, M. Friis, D. Malesani, P. Jakobsson, et al., Mon. Not. R. Astron. Soc. 452, 1535 (2015).

    Article  ADS  Google Scholar 

  22. Z. Cano, L. Izzo, A. de Ugarte Postigo, et al., Astron. Astrophys. 605, A107 (2017a).

    Article  Google Scholar 

  23. Z. Cano, S.-Q. Wang, Z.-G. Dai, and X.-F. Wu, Adv. Astron. 2017, 8929054 (2017b).

    Article  ADS  Google Scholar 

  24. I. V. Chelovekov, S. A. Grebenev, A. S. Pozanenko, and P. Yu. Minaev, Astron. Lett. 45, 635 (2019).

    Article  ADS  Google Scholar 

  25. T. J.-L. Courvoisier, R. Walter, V. Beckmann, A. J. Dean, P. Dubath, R. Hudec, P. Kretschmar, S. Mereghetti, et al., Astron. Astrophys. 411, L53 (2003).

    Article  ADS  Google Scholar 

  26. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, J. R. Findlay, D. Finkbeiner, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  27. P. A. Evans, A. P. Beardmore, K. L. Page, L. G. Tyler, J. P. Osborne, P. T. O’Brien, L. Vetere, et al., Astron. Astrophys. 469, 379 (2007).

    Article  ADS  Google Scholar 

  28. P. A. Evans, A. P. Beardmore, K. L. Page, J. P. Osborne, P. T. O’Brien, R. Willingale, R. L. C. Starling, D. N. Burrows, et al., Mon. Not. R. Astron. Soc. 397, 1177 (2009).

    Article  ADS  Google Scholar 

  29. E. E. Fenimore, J. J. M. in’t Zand, J. P. Norris, J. T. Bonnell, and R. J. Nemiroff, Astrophys. J. 448, L101 (1995).

    Article  ADS  Google Scholar 

  30. T. J. Galama, P. M. Vreeswijk, J. van Paradijs, C. Kouveliotou, T. Augusteijn, H. Böhnhardt, J. P. Brewer, V. Doublier, et al., Nature (London, U.K.) 395, 670 (1998).

    Article  ADS  Google Scholar 

  31. N. Gehrels, G. Chincarini, P. Giommi, K. O. Mason, J. A. Nousek, A. A. Wells, N. E. White, S. D. Barthelmy, et al., Astrophys. J. 611, 1005 (2004).

    Article  ADS  Google Scholar 

  32. J. Greiner, P. A. Mazzali, D. A. Kann, T. Krühler, E. Pian, S. Prentice, E. F. Olivares, A. Rossi, et al., Nature (London, U.K.) 523, 189 (2015).

    Article  ADS  Google Scholar 

  33. J. Hakkila and R. D. Preece, Astrophys. J. 740, 104 (2011).

    Article  ADS  Google Scholar 

  34. K. E. Heintz, D. B. Malesani, and S. Moran-Kelly, GCN Circ. 23478, 1 (2018).

  35. J. Hjorth, J. Sollerman, P. Moller, J. P. U. Fynbo, S. E. Woosley, C. Kouveliotou, N. R. Tanvir, J. Greiner, et al., Nature (London, U.K.) 423, 847 (2003).

    Article  ADS  Google Scholar 

  36. O. Ilbert, S. Arnouts, H. J. McCracken, M. Bolzonella, E. Bertin, O. le Févre, Y. Mellier, G. Zamorani, et al., Astron. Astrophys. 457, 841 (2006).

    Article  ADS  Google Scholar 

  37. K. Iwamoto, P. A. Mazzali, K. Nomoto, H. Umeda, T. Nakamura, F. Patat, I. J. Danziger, T. R. Young, et al., Nature (London, U.K.) 395, 672 (1998).

    Article  ADS  Google Scholar 

  38. L. Izzo, A. de Ugarte Postigo, D. A. Kann, D. B. Malesani, K. E. Heintz, N. R. Tanvir, V. D’Elia, K. Wiersema, et al., GCN Circ. 23488, 1 (2018).

    Google Scholar 

  39. L. Izzo, A. de Ugarte Postigo, K. Maeda, C. C. Thöne, D. A. Kann, M. della Valle, A. Sagues Carracedo, M. J. Michalowski, et al., Nature (London, U.K.) 565, 324 (2019).

    Article  ADS  Google Scholar 

  40. D. A. Kann, P. Schady, F. E. Olivares, S. Klose, A. Rossi, D. A. Perley, T. Krühler, J. Greiner, et al., Astron. Astrophys. 624, A143 (2019).

    Article  Google Scholar 

  41. T. Khanam, V. Sharma, A. Vibhute, V. Bhalerao, D. Bhattacharya, A. R. Rao, and S. Vadawale, GCN Circ. 23501, 1 (2018).

  42. A. von Kienlin, V. Beckmann, A. Rau, N. Arend, K. Bennett, B. McBreen, P. Connell, S. Deluit, et al., Astron. Astrophys. 411, L299 (2003a).

    Article  ADS  Google Scholar 

  43. A. von Kienlin, N. Arend, G. G. Lichti, A. W. Strong, and P. Connell, in Proceedings of the SPIE Conference on X-ray and Gamma-Ray Telescopes and Instruments for Astronomy, Ed. by J. E. Truemper and H. D. Tananbaum, Proc. SPIE 4851, 1336 (2003b).

  44. A. K. H. Kong, GCN Circ. 23475, 1 (2018).

  45. T. M. Koshut, W. S. Paciesas, C. Kouveliotou, J. van Paradijs, G. N. Pendleton, G. J. Fishman, and C. A. Meegan, Astrophys. J. 463, 570 (1996).

    Article  ADS  Google Scholar 

  46. C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat, M. S. Briggs, T. M. Koshut, W. S. Paciesas, and G. N. Pendleton, Astrophys. J. 413, L101 (1993).

    Article  ADS  Google Scholar 

  47. S. R. Kulkarni, D. A. Frail, M. H. Wieringa, R. D. Ekers, E. M. Sadler, R. M. Wark, J. L. Higdon, E. S. Phinney, and J. S. Bloom, Nature (London, U.K.) 395, 663 (1998).

    Article  ADS  Google Scholar 

  48. C. Labanti, G. di Cocco, G. Ferro, F. Gianotti, A. Mauri, E. Rossi, J. B. Stephen, A. Traci, and M. Trifoglio, Astron. Astrophys. 411, L149 (2003).

    Article  ADS  Google Scholar 

  49. T. Laskar, H. van Eerten, P. Schady, C. G. Mundell, K. D. Alexander, R. B. Duran, E. Berger, J. Bolmer, et al., Astrophys. J. 884, 121 (2019).

    Article  ADS  Google Scholar 

  50. F. Lebrun, J. P. Leray, P. Lavocat, J. Crètolle, M. Arqués, C. Blondel, C. Bonnin, A. Bouére, et al., Astron. Astrophys. 411, L141 (2003).

    Article  ADS  Google Scholar 

  51. H.-J. Lü, L. Lan, B. Zhang, E.-W. Liang, D. A. Kann, S.-S. Du, and J. Shen, Astrophys. J. 862, 130 (2018).

    Article  ADS  Google Scholar 

  52. N. Masetti, E. Palazzi, E. Pian, L. Hunt, J. P. U. Fynbo, J. Gorosabel, S. Klose, S. Benetti, et al., Astron. Astrophys. 438, 841 (2005).

    Article  ADS  Google Scholar 

  53. T. Matheson, P. M. Garnavich, K. Z. Stanek, D. Bersier, S. T. Holland, K. Krisciunas, N. Caldwell, P. Berlind, et al., Astrophys. J. 599, 394 (2003).

    Article  ADS  Google Scholar 

  54. E. Mazaeva, A. Volnova, A. Pozanenko, I. Nikolenko, A. Novichonok, and I. Molotov, GCN Circ. 23479, 1 (2018a).

  55. E. Mazaeva, E. Klunko, S. Belkin, A. Volnova, and A. Pozanenko, GCN Circ. 23522, 1 (2018b).

  56. E. Mazaeva, A. Pozanenko, and P. Minaev, Int. J. Mod. Phys. D 27, 1844012 (2018c).

    Article  ADS  Google Scholar 

  57. S. Mereghetti, D. Götz, J. Borkowski, A. von Kienlin, P. Ubertini, A. Bazzano, L. Foschini, G. Malaguti, et al., Astron. Astrophys. 411, L291 (2003).

    Article  ADS  Google Scholar 

  58. S. Mereghetti, D. Götz, C. Ferrigno, E. Bozzo, V. Savchenko, L. Ducci, and J. Borkowski, GCN Circ. 23469, 1 (2018a).

  59. S. Mereghetti, F. Pintore, D. Götz, C. Ferrigno, E. Bozzo, V. Savchenko, L. Ducci, and J. Borkowski, GCN Circ. 23471, 1 (2018b).

  60. P. Yu. Minaev and A. S. Pozanenko, Mon. Not. R. Astron. Soc. 492, 1919 (2020).

    Article  ADS  Google Scholar 

  61. P. Yu. Minaev, A. S. Pozanenko, and V. M. Loznikov, Astrophys. Bull. 65, 326 (2010).

    Article  ADS  Google Scholar 

  62. P. Yu. Minaev, S. A. Grebenev, A. S. Pozanenko, S. V. Mol’kov, D. D. Frederiks, and S. V. Golenetskii, Astron. Lett. 38, 613 (2012).

    Article  ADS  Google Scholar 

  63. P. Yu. Minaev, A. S. Pozanenko, S. V. Mol’kov, and S. A. Grebenev, Astron. Lett. 40, 235 (2014).

    Article  ADS  Google Scholar 

  64. G. Yu. Mozgunov, P. Yu. Minaev, and A. S. Pozanenko, Astron. Lett. 47 (2021, in press).

  65. N. S. Nesterov, A. E. Vol’vach, and I. D. Strepka, Astron. Lett. 26, 204 (2000).

    Article  ADS  Google Scholar 

  66. J. P. Norris, J. T. Bonnell, D. Kazanas, J. D. Scargle, J. Hakkila, and T. W. Giblin, Astrophys. J. 627, 324 (2005).

    Article  ADS  Google Scholar 

  67. E. F. Olivares, J. Greiner, P. Schady, S. Klose, T. Krühler, A. Rau, S. Savaglio, D. A. Kann, et al., Astron. Astrophys. 577, A44 (2015).

    Article  Google Scholar 

  68. B. Paczynski, Astrophys. J. 494, L45 (1998).

    Article  ADS  Google Scholar 

  69. K. L. Page, A. P. Beardmore, V. D’Elia, A. D’Ai, A. Melandri, S. J. LaPorte, J. A. Kennea, B. Sbarufatti, and P. A. Evans, GCN Circ. 23474, 1 (2018).

  70. F. Pintore, S. Mereghetti, D. Gotz, C. Ferrigno, E. Bozzo, V. Savchenko, L. Ducci, and J. Borkowski, GCN Circ. 23472, 1 (2018).

  71. R. Podesta, C. Lopez, and F. Podesta, GCN Circ. 23470, 1 (2018).

  72. A. S. Pozanenko, V. V. Rumyantsev, V. M. Loznikov, A. A. Vol’nova, and A. P. Shul’ga, Astron. Lett. 34, 141 (2008).

    Article  ADS  Google Scholar 

  73. A. S. Pozanenko, P. Yu. Minaev, S. A. Grebenev, and I. V. Chelovekov, Astron. Lett. 45, 710 (2019).

    Article  ADS  Google Scholar 

  74. G. Ramsay, J. Lyman, K. Ulaczyk, D. Steeghs, K. Wiersema, M. Dyer, B. Gompertz, A. Levan, et al., GCN Circ. 23503, 1 (2018).

    Google Scholar 

  75. A. Rau, A. von Kienlin, K. Hurley, and G. G. Lichti, ESA-SP 552, 607 (2004).

    ADS  Google Scholar 

  76. A. Rau, A. von Kienlin, K. Hurley, and G. G. Lichti, Astron. Astrophys. 438, 1175 (2005).

    Article  ADS  Google Scholar 

  77. I. Reva, M. Krugov, A. Volnova, E. Mazaeva, S. Belkin, and A. Pozanenko, GCN Circ. 23507, 1 (2018).

  78. M. G. Revnivtsev, R. A. Syunyaev, D. A. Varshalovich, V. V. Zheleznyakov, A. M. Cherepashchuk, A. A. Lutovinov, E. M. Churazov, S. A. Grebenev, and M. R. Gil’fanov, Astron. Lett. 30, 382 (2004).

    Article  ADS  Google Scholar 

  79. J. P. Roques, S. Schanne, A. von Kienlin, J. Knödlseder, R. Briet, L. Bouchet, Ph. Paul, S. Boggs, et al., Astron. Astrophys. 411, L91 (2003).

    Article  ADS  Google Scholar 

  80. F. Ryde, L. Borgonovo, S. Larsson, N. Lund, A. von Kienlin, and G. Lichti, Astron. Astrophys. 411, L331 (2003).

    Article  ADS  Google Scholar 

  81. R. Sari, T. Piran, and R. Narayan, Astrophys. J. 497, L17 (1998).

    Article  ADS  Google Scholar 

  82. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  83. N. A. Skvortsov, E. A. Avvakumova, D. O. Bryukhov, A. E. Vovchenko, A. A. Vol’nova, O. B. Dluzhnevskaya, P. V. Kaigorodov, L. A. Kalinichenko, et al., Astrophys. Bull. 71, 114 (2016).

    Article  ADS  Google Scholar 

  84. J. Sollerman, J. P. U. Fynbo, J. Gorosabel, J. P. Halpern, J. Hjorth, P. Jakobsson, N. Mirabal, D. Watson, et al., Astron. Astrophys. 466, 839 (2007).

    Article  ADS  Google Scholar 

  85. S. Srivastava, H. Kumar, S. Otzer, K. De, V. Bhalerao, G. C. Anupama, and M. Kasliwal, GCN Circ. 23510, 1 (2018).

  86. K. Z. Stanek, T. Matheson, P. M. Garnavich, P. Martini, P. Berlind, N. Caldwell, P. Challis, W. R. Brown, et al., Astrophys. J. 591, L17 (2003).

    Article  ADS  Google Scholar 

  87. D. Svinkin, S. Golenetskii, R. Aptekar, D. Frederiks, M. Ulanov, A. Tsvetkova, A. Lysenko, A. Kozlova, and T. Cline, GCN Circ. 23495, 1 (2018).

  88. C. C. Thöne, A. de Ugarte Postigo, C. L. Fryer, K. L. Page, J. Gorosabel, M. A. Aloy, D. A. Perley, C. Kouveliotou, et al., Nature (London, U.K.) 480, 72 (2011).

    Article  ADS  Google Scholar 

  89. P. Ubertini, F. Lebrun, G. di Cocco, A. Bazzano, A. J. Bird, K. Broenstad, A. Goldwurm, G. la Rosa, et al., Astron. Astrophys. 411, L131 (2003).

    Article  ADS  Google Scholar 

  90. G. Vedrenne, J.-P. Roques, V. Schönfelder, P. Mandrou, G. G. Lichti, A. von Kienlin, B. Cordier, S. Schanne, et al., Astron. Astrophys. 411, L63 (2003).

    Article  ADS  Google Scholar 

  91. A. A. Volnova, M. V. Pruzhinskaya, A. S. Pozananko, S. I. Blinnikov, P. Yu. Minaev, O. A. Burkhonov, A. M. Chernenko, Sh. A. Ehgamberdiev, et al., Mon. Not. R. Astron. Soc. 467, 3500 (2017).

    Article  ADS  Google Scholar 

  92. A. Volnova, E. Mazaeva, D. Buckley, and A. Pozanenko, GCN Circ. 23477, 1 (2018a).

  93. A. Volnova, E. Mazaeva, S. Belkin, D. Buckley, M. Krugov, and A. Pozanenko, GCN Circ. 23497, 1 (2018b).

  94. A. Volnova, A. Pozanenko, E. Mazaeva, et al., in Proceedings of the 22nd International Conference DAMDID/RCDL-2020, Voronezh, Russia, October 13–16, 2020, Ed. by O. A. Kozaderov and V. N. Zakharov, CCIS (2020, in press).

  95. C. Winkler, T. J.-L. Courvoisier, G. di Cocco, N. Gehrels, A. Gimenez, S. Grebenev, W. Hermsen, J. M. Mas-Hesse, et al., Astron. Astrophys. 411, L1 (2003).

    Article  ADS  Google Scholar 

  96. B.-B. Zhang, B. Zhang, A. J. Castro-Tirado, Z. G. Dai, P.-H. T. Tam, X.-Y. Wang, Y.-D. Hu, S. Karpov, et al., Nat. Astron. 2, 69 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is based on the observational data from the INTEGRAL international astrophysical gamma-ray observatory (retrieved via its Russian and European Science Data Centers) and the Neil Gehrels Swift observatory (retrieved via its Science Data Center at the University of Leicester, Great Britain). We used the observational data from the DECam camera of the Blanco telescope at the CTIO observatory (DECaLS; project NSF OIR Lab 2014B-0404 headed by D. Schlegel and A. Dey).

We are grateful to the ‘‘Terskol Observatory’’ Sharing Center of the Institute of Astronomy of the Russian Academy of Sciences (INASAN) for the observations with the Zeiss-1000 (I) telescope on Mount Koshka at the Simeiz Observatory of INASAN. The analysis of the observations with the RT-22 telescope was supported by RFBR grant no. 19-29-11027.

Funding

Belkin, Pozanenko, Mazaeva, Volnova, and Minaev are grateful to the Russian Foundation for Basic Research (project no. 17-52-80139) for its partial support of the analysis of optical burst afterglow observations; Grebenev and Chelovekov are grateful to the Russian Science Foundation (project no. 18-12-00522) for its partial support of the analysis of X-ray and gamma-ray burst observations; Blinnikov is grateful to the same project for the support of his study of the light curve for the SN discovered at the burst location. Reva thanks the Financing Program BR 05336383 of the Aerospace Committee of the Ministry of Digital Development, Innovations, and Aerospace Industry of Kazakhstan for its support; Inasaridze was supported by grant RF-18-1193 of the Shota Rustaveli Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Belkin.

Additional information

Translated by V. Astakhov

APPENDIX

APPENDIX

ANALYTICAL DESCRIPTION OF THE SN LIGHT CURVE

In this paper we estimated the parameters of the SN associated with GRB 181201A (the position of the light-curve peak and its amplitude) by fitting the model light curve of the previously well-studied SN 2013dx/GRB 130702A (Volnova et al. 2017) to the photometric data. In the case of a sufficient number of measurements (number of data points in the light curve), analytical functions can also be used to determine the SN parameters. Figure 15 shows the best fits to the bolometric light curve of SN 2013dx (Volnova et al. 2017) by various functions. The following functions were used:

  • the Bazin function (Bazin et al. 2011)

    $$f_{1}(t)=A+B\frac{\exp[-(t-t_{0})/\tau_{\textrm{fall}}]}{1+\exp[-(t-t_{0})\tau_{\textrm{rise}}]};$$
  • the quartic polynomial

    $$f_{2}(t)=A+Bt+Ct^{2}+Dt^{3}+Et^{4};$$
  • the quadratic polynomial (Bianco et al. 2014)

    $$f_{3}(t)=A+Bt+Ct^{2};$$
  • the lognormal function

    $$f_{4}(t)=A+\frac{B}{\omega}\left(\frac{2}{\pi}\right)^{1/2}\exp\left[-\frac{2\log^{2}(t/t_{0})}{\omega^{2}}\right].$$

From Fig. 15 we can understand how well these functions are able to fit the SN light curve. Table 11 additionally presents the parameters characterizing the quality of this fit. In particular, it can be seen that the Bazin function derived empirically to model the SN light curves allows the light curve of SN 2013dx to be fitted best over the entire period of its activity. The long-term SN light curve can also be described satisfactorily with the quartic polynomial. The functions with fewer parameters successfully describe only the immediate neighborhood of the light-curve peak in an interval of \({\pm}6.5\) days. They can be used only for an approximate (\({\sim}0.5\) day) determination of the time of this peak.

Fig. 15
figure 15

The best fit (green curves) of the bolometric light curve of SN 2013dx (black points; see Volnova et al. 2017) by various analytical functions: (a) a Bazin function (Bazin et al. 2011), (b) a quartic polynomial, (c) a parabola (Bianco et al. 2014), and (d) a lognormal distribution. The chosen model function is indicated by the solid line in the time interval where it fits well the light curve (\(\chi^{2}\) normalized to the number of degrees of freedom is \({\lesssim}1.1\)) and by the dashed line in the intervals where it fits the light curve unsatisfactorily.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkin, S.O., Pozanenko, A.S., Mazaeva, E.D. et al. Multiwavelength Observations of GRB 181201A and Detection of Its Associated Supernova. Astron. Lett. 46, 783–811 (2020). https://doi.org/10.1134/S1063773720120014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720120014

Keywords:

Navigation