Skip to main content
Log in

Radio Recombination Lines in Orion A at 8 and 13 mm: The Ionization Structure and Effective Temperature of the Star θ1 C Ori, the Electron Temperature of the Ionized Gas and Turbulence

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The radio recombination lines (RRLs) of hydrogen, helium (H, He) and carbon (C) have been observed at several positions of the HII region Orion A with the RT-22 radio telescope (Pushchino) at 8 and 13 mm. Information about the ionization structure of the HII region has been obtained. The behavior of y+ = n(He+)/n(H+) over the nebula and model calculations suggest that the effective temperature (Teff) of the star θ1 C Ori is in the range 35 000–37 500 K, corresponding to a spectral type ≈O6.5 V, which is important for the calibration of hot O-B stars. The electron temperatures (Te) of this HII region have been measured by taking into account the departures from local thermodynamic equilibrium (LTE); their distribution over the nebula up to distances of 300 arcsec from the center has been derived. The inferred temperatures are in the range 6600–8400 K, strictly decreasing in the eastward directionwith distance from the center, also tend to drop toward the periphery in the southward and westward directions. The turbulent velocities (Vt) of the ionized gas and their distribution over the nebula have been determined. The values of Vt inferred from H RRLs are in the range 9–13 km s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aver, K. A. Olive, and E. D. Skillman, J. Cosmol. Astropart. Phys. 07, 011 (2015).

    Article  ADS  Google Scholar 

  2. L. D. Bakhrakh, M. I. Grigor’eva, and R. L. Sorochenko, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 19, 1614 (1976).

    ADS  Google Scholar 

  3. A. Coc and E. Vangioni, Int. J. Mod. Phys. E 26, 08 (2017).

    Article  Google Scholar 

  4. P. S. Conti and A. B. Underhill, SP-497 (CNRS, NASA, Paris,Washington, 1988).

    Google Scholar 

  5. M. V. F. Copetti and E. I. D. Bica, Astrophys. Space Sci. 91, 381 (1983).

    Article  ADS  Google Scholar 

  6. D. Ershov, S. A. Gulyaev, A. Ivanchik, D. A. Varshalovich, and A. Tsivilev, Astron. Astrophys. Trans. 15, 281 (1998).

    Article  ADS  Google Scholar 

  7. Gopal-Krishna, R. Subramanyan, G. Swarup, C. Thum, and H. Steppe, Vistas Astron. 31, 207 (1988).

    Article  ADS  Google Scholar 

  8. M. A. Gordon and R. L. Sorochenko, Radio Recombination Lines: Their Physics and Astronomical Applications (Fizmatlit, Moscow, 2003; Springer, New York, 2009).

    Google Scholar 

  9. C. T. Hua and R. Louise, Astron. Astrophys. Suppl. Ser. 88, 477 (1982).

    Google Scholar 

  10. Y. I. Izotov, T.X. Thuan, and N. G. Guseva, Mon.Not. R. Astron. Soc. 445, 778 (2014).

    Article  ADS  Google Scholar 

  11. P. Massey, J. Puls, A. W. A. Pauldrach, F. Bresolin, R. P. Kudritzki, and T. Simon, Astrophys. J. 627, 477 (2005).

    Article  ADS  Google Scholar 

  12. A. Mesa-Delgado, C. Esteban, and J. Garcia-Rojas, Astrophys. J. 675, 389 (2008).

    Article  ADS  Google Scholar 

  13. C. R. O’Dell, W. Kollatschny, and G. J. Ferland, Astrophys. J. 837, 151 (2017).

    Article  ADS  Google Scholar 

  14. S. B. Pikel’ner, in Physics of the Cosmos, A Small Encyclopedia (Sov. Entsiklopediya, Moscow, 1976), p. 356 [in Russian].

    Google Scholar 

  15. A.M. Polyakov and A. P. Tsivilev, Astron. Lett. 33, 34 (2007).

    Article  ADS  Google Scholar 

  16. S. Poppi, A. P. Tsivilev, S. Cortiglioni, G. G. C. Palumbo, and R. L. Sorochenko, Astron. Astrophys. 464, 995 (2007).

    Article  ADS  Google Scholar 

  17. S. R. Pottasch, P. R. Wesselius, and R. J. Van Duinen, Astron. Astrophys. 77, 189 (1979).

    ADS  Google Scholar 

  18. R. H. Rubin, Astrophys. J. 287, 653 (1984).

    Article  ADS  Google Scholar 

  19. R. H. Rubin, J. P. Simpson, C. R. O’Dell, I. A. McNabb, S. W. J. Colgan, S. Y. Zhuge, G. J. Ferland, and S. A. Hidalgo, Mon. Not. R. Astron. Soc. 410, 1320 (2011).

    Article  ADS  Google Scholar 

  20. M. Salem and M. Brocklehurst, Astrophys. J. Suppl. Ser. 39, 633 (1979).

    Article  ADS  Google Scholar 

  21. S. Simon-Dıaz and G. Stasi’nska, Mon. Not. R. Astron. Soc. 389, 1009 (2008).

    Article  ADS  Google Scholar 

  22. G. T. Smirnov and A. P. Tsivilev, Sov. Astron. 26, 616 (1982).

    ADS  Google Scholar 

  23. R. L. Sorochenko and I. I. Berulis, Astroph. Lett. 4, 173 (1969).

    ADS  Google Scholar 

  24. R. L. Sorochenko, I. I. Berulis, A. V. Gusev, E. E. Lekht, L. M. Nagornykh, G. T. Smirnov, Tr. Fiz. Inst. im. P. N. Lebedeva 159, 53 (1985).

    Google Scholar 

  25. R. L. Sorochenko, G. T. Smirnov, and G. Rydbeck, Astron. Astrophys. 198, 233 (1988).

    ADS  Google Scholar 

  26. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  27. O. Stahl, G. Wade, V. Petit, B. Stober, and L. Schanne, Astron. Astrophys. 487, 323 (2008).

    Article  ADS  Google Scholar 

  28. A. P. Tsivilev, Astron. Rep. 37, 39 (1993).

    ADS  Google Scholar 

  29. A. P. Tsivilev, Cand. Sci. (Phys. Math.) Dissertation (Lebedev Phys. Inst. RAS,Moscow, 1998).

    Google Scholar 

  30. A. P. Tsivilev, Astron. Lett. 35, 670 (2009).

    Article  ADS  Google Scholar 

  31. A. P. Tsivilev, Astron. Lett. 40, 615 (2014).

    Article  ADS  Google Scholar 

  32. A. P. Tsivilev, A. A. Ershov, G. T. Smirnov, and R. L. Sorochenko, Sov. Astron. Lett. 12, 355 (1986).

    ADS  Google Scholar 

  33. A. P. Tsivilev, S. Poppi, S. Cortiglioni, G. G. C. Palumbo, M. Orsini, and G. Maccaferri, New Astron. 7, 499 (2002).

    Article  Google Scholar 

  34. A. P. Tsivilev, S. Yu. Parfenov, A. M. Sobolev, and V. V. Krasnov, Astron. Lett. 39, 737 (2013).

    Article  ADS  Google Scholar 

  35. A. P. Tsivilev, S. Yu. Parfenov, and A. M. Sobolev, Odessa Astron. Publ. 27/2, 81 (2014).

    ADS  Google Scholar 

  36. A. P. Tsivilev, S. Yu. Parfenov, and V. V. Krasnov, Odessa Astron. Publ. 29, 163 (2016).

    Article  ADS  Google Scholar 

  37. W. D. Vacca, C. D. Garmany, and J.M. Shull, Astrophys. J. 460, 914 (1996).

    Article  ADS  Google Scholar 

  38. W. H. Warren, Jr. and J. E. Hesser, Astrophys. J. Suppl. Ser. 34, 115 (1977).

    Article  ADS  Google Scholar 

  39. T. L. Wilson and T. Pauls, Astron. Astrophys. 138, 225 (1984).

    ADS  Google Scholar 

  40. T. L. Wilson, T. M. Bania, and D. S. Balser, Astrophys. J. 812, 45 (2015).

    Article  ADS  Google Scholar 

  41. T. L. Wilson and B. Jaeger, Astron. Astrophys. 184, 291 (1987).

    ADS  Google Scholar 

  42. T. L. Wilson, L. Filges, C. Codella, W. Reich, and P. Reich, Astron. Astrophys. 327, 1177 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Tsivilev.

Additional information

Russian Text © A.P. Tsivilev, V.V. Krasnov, S.V. Logvinenko, 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 1, pp. 24–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsivilev, A.P., Krasnov, V.V. & Logvinenko, S.V. Radio Recombination Lines in Orion A at 8 and 13 mm: The Ionization Structure and Effective Temperature of the Star θ1 C Ori, the Electron Temperature of the Ionized Gas and Turbulence. Astron. Lett. 45, 20–29 (2019). https://doi.org/10.1134/S1063773719010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719010055

Keywords

Navigation