Skip to main content
Log in

A joined model for solar dynamo and differential rotation

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

A model for the solar dynamo, consistent in global flow and numerical method employed with the differential rotation model, is developed. The magnetic turbulent diffusivity is expressed in terms of the entropy gradient, which is controlled by the model equations. The magnetic Prandtl number and latitudinal profile of the alpha-effect are specified by fitting the computed period of the activity cycle and the equatorial symmetry of magnetic fields to observations. Then, the instants of polar field reversals and time-latitude diagrams of the fields also come into agreement with observations. The poloidal field has a maximum amplitude of about 10 Gs in the polar regions. The toroidal field of several thousand Gauss concentrates near the base of the convection zone and is transported towards the equator by the meridional flow. The model predicts a value of about 1037 erg for the total magnetic energy of large-scale fields in the solar convection zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Barnes, Astrophys. J. 586, 464 (2003).

    Article  ADS  Google Scholar 

  2. J. R. Barnes, A. Collier Cameron, J.-F. Donati, D. J. James, S. C. Marsden, and P. Petit, Mon. Not. R. Astron. Soc. 357, L1 (2005).

    Article  ADS  Google Scholar 

  3. S. Basu and H. M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997).

    Article  ADS  Google Scholar 

  4. R. Cameron and M. Schüssler, Science 347, 1333 (2015).

    Article  ADS  Google Scholar 

  5. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press, 1961).

    MATH  Google Scholar 

  6. P. Charbonneau, J. Christensen-Dalsgaard, R. Henning, R. M. Larsen, J. Schou, M. J. Thompson, and S. Tomczyk, Astrophys. J. 527, 445 (1999).

    Article  ADS  Google Scholar 

  7. P. Chatterjee, D. Nandy, and A. R. Choudhuri, Astron. Astrophys. 427, 1019 (2004).

    Article  ADS  Google Scholar 

  8. A. R. Choudhuri, M. Schüssler, and M. Dikpati, Astron. Astrophys. 303, L29 (1995).

    ADS  Google Scholar 

  9. J. Christensen-Dalsgaard, D. O. Gough, and M. J. Thompson, Astrophys. J. 378, 413 (1991).

    Article  ADS  Google Scholar 

  10. B. Croll, G. A. H. Walker, R. Kuschnig, J. M. Matthews, J. F. Rowe, A. Walker, S. M. Rucinski, A. P. Hatzes, et al., Astrophys. J. 648, 607 (2006).

    Article  ADS  Google Scholar 

  11. M. Dasi-Espuig, S. K. Solanki, N. A. Krivova, R. Cameron, and T. Pen˜ uela, Astron. Astrophys. 518, A7 (2010).

    Article  ADS  Google Scholar 

  12. B. R. Durney, Solar Phys. 160, 213 (1995).

    Article  ADS  Google Scholar 

  13. B. R. Durney, Solar Phys. 217, 1 (2003).

    Article  ADS  Google Scholar 

  14. D. V. Erofeev, Multi-Wavelength Investigation of Solar Activity, IAU Symp. 223, (Ed. by A. V. Stepanov, E. E. Benevolenskaya, and A. G. Kosovichev (Cambridge, UK: Cambridge Univ. Press, 2004), p.97.

  15. G. Hazra, B. B. Karak, and A. R. Choudhuri, Astrophys. J. 782, 93 (2014).

    Article  ADS  Google Scholar 

  16. H. Hotta and T. Yokoyama, Astrophys. J. 714, L308 (2010).

    Article  ADS  Google Scholar 

  17. L. Jouve, A. S. Brun, R. Arlt, A. Brandenburg, M. Dikpati, A. Bonanno, P. J. Käpylä, D. Moss, et al., Astron. Astrophys. 483, 949 (2008).

    Article  ADS  Google Scholar 

  18. L. L. Kitchatinov, Astron. Lett. 28, 626 (2002).

    Article  ADS  Google Scholar 

  19. L. L. Kitchatinov, Geomagnetism and Aeronomy 56 (in press); arXiv: 1603.07852 (2016).

  20. L. L. Kitchatinov and A. A. Nepomnyashchikh, Adv. Space Res. 58, 1554 (2016).

    Article  ADS  Google Scholar 

  21. L. L. Kitchatinov and S. V. Olemskoy, Mon. Not. R. Astron. Soc. 411, 1059 (2011a).

    Article  ADS  Google Scholar 

  22. L. L. Kitchatinov and S. V. Olemskoy, Astron. Lett. 37, 656 (2011b).

    Article  ADS  Google Scholar 

  23. L. L. Kitchatinov and S. V. Olemskoy, Mon. Not. R. Astron. Soc. 423, 3344 (2012a).

    Article  ADS  Google Scholar 

  24. L. L. Kitchatinov and S. V. Olemskoy, Solar Phys. 276, 3 (2012b).

    Article  ADS  Google Scholar 

  25. L. L. Kitchatinov and S. V. Olemskoy, Mon. Not. R. Astron. Soc. 459, 4353 (2016).

    Article  ADS  Google Scholar 

  26. L. L. Kitchatinov, V. V. Pipin, and G. Rüdiger, Astron. Nachr. 315, 157 (1994).

    Article  ADS  Google Scholar 

  27. R. P. Kraft, Astrophys. J. 150, 551 (1967).

    Article  ADS  Google Scholar 

  28. F. Krause and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon Press, 1980).

    MATH  Google Scholar 

  29. S. V. Latyshev and S. V. Olemskoy, Astron. Lett. 42, 488 (2016).

    Article  ADS  Google Scholar 

  30. T. S. Metcalfe, R. Egeland, and J. van Saders, Astrophys. J. Lett. 826, L2 (2016).

    Article  ADS  Google Scholar 

  31. V. N. Obridko, D. D. Sokoloff, K. M. Kuzanyan, B. D. Shelting, and V. G. Zakharov, Mon. Not. R. Astron. Soc. 365, 827 (2006).

    Article  ADS  Google Scholar 

  32. V. V. Pipin, Geophys. Astrophys. Fluid Dyn. 102, 21 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  33. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies (Cambridge Univ. Press, 1992).

    MATH  Google Scholar 

  34. S. P. Rajaguru and H. M. Antia, Astrophys. J. 813, 114 (2015).

    Article  ADS  Google Scholar 

  35. T. N. Rengarajan, Astrophys. J. 283, L63 (1984).

    Article  ADS  Google Scholar 

  36. G. Rüdiger, Differential Rotation and Stellar Convection (New York: Gordon and Breach, 1989).

    Google Scholar 

  37. J. L. van Saders, T. Ceillier, T. S. Metcalfe, V. Silva Aguirre, M. H. Pinsonneault, R. A. Garciá, S. Mathur, and G. R. Davies, Nature 529, 181 (2016).

    Article  ADS  Google Scholar 

  38. J. Schou, H. M. Antia, S. Basu, R. S. Bogart, R. I. Bush, S. M. Chitre, J. Christensen-Dalsgaard, M. P. Di Mauro, et al., Astrophys. J. 505, 390 (1998).

    Article  ADS  Google Scholar 

  39. A. Skumanich, Astrophys. J. 171, 565 (1972).

    Article  ADS  Google Scholar 

  40. H. B. Snodgrass and R. K. Ulrich, Astrophys. J. 351, 309 (1990).

    Article  ADS  Google Scholar 

  41. J. O. Stenflo, Astrophys. Space Sci. 144, 321 (1988).

    ADS  Google Scholar 

  42. L. Svalgaard, T. L. Duvall, and P. H. Scherrer, Solar Phys. 58, 225 (1978).

    Article  ADS  Google Scholar 

  43. Yu. I. Vitinsky, M. Kopecky, and G. V. Kuklin, The Statistics of Sunspots (Moscow: Nauka, 1986) [in Russian].

    Google Scholar 

  44. G. A. H. Walker, B. Croll, R. Kuschnig, A. Walker, S. M. Rucinski, J. M. Matthews, D. B. Guenther, A. F. J. Moffat et al., Astrophys. J. 659, 1611 (2007).

    Article  ADS  Google Scholar 

  45. P. R. Wilson, D. Burtonclay, and Y. Li, Astrophys. J. 489, 395 (1997).

    Article  ADS  Google Scholar 

  46. T. A. Yousef, A. Brandenburg, and G. Rüdiger, Astron. Astrophys. 411, 321 (2003).

    Article  ADS  Google Scholar 

  47. Ya. B. Zel’dovich, Sov. Phys. JETP 4, 460 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Kitchatinov.

Additional information

Original Russian Text © L.L. Kitchatinov, A.A. Nepomnyashchikh, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 5, pp. 370–382.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitchatinov, L.L., Nepomnyashchikh, A.A. A joined model for solar dynamo and differential rotation. Astron. Lett. 43, 332–343 (2017). https://doi.org/10.1134/S106377371704003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371704003X

Keywords

Navigation