Skip to main content
Log in

Large-scale Model of the Axisymmetric Dynamo with Feedback Effects

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A dynamo model is presented, based on a previously introduced kinematic model, in which the effect of the magnetic field on the mass flow through the Lorentz force is included. Given the base mass flow corresponding to the case with no magnetic field, and assuming that the modification of this flow through the Lorentz force can be treated as a perturbation, a complete model of the large-scale magnetic field dynamics can be obtained. The input needed consists of the large-scale meridional and zonal flows, the small-scale magnetic diffusivity, and a constant parameter entering the expression of the \(\alpha \)-effect. When applied to a Sun-like star, the model shows realistic dynamics of the magnetic field, including cycle duration, consistent field amplitudes with the correct parity, progression of the zonal magnetic field toward the equator, and motion toward the poles of the radial field at high latitudes. In addition, the radial and zonal components show a correct phase relation, and at the surface level, the magnetic helicity is predominantly negative in the northern hemisphere and positive in the southern hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Belucz, B., Dikpati, M., Forgács-Dajka, E.: 2015, A Babcock–Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys. J. 806, 169.

    Article  ADS  Google Scholar 

  • Bonanno, A., Elstner, D., Rüdiger, G., Belvedere, G.: 2002, Parity properties of an advection dominated solar \(\alpha ^{2}\omega \)-dynamo. Astron. Astrophys. 390, 673.

    Article  ADS  Google Scholar 

  • Brandenburg, A., Moss, D., Tuominen, I.: 1992, Stratification and thermodynamics in mean-field dynamos. Astron. Astrophys. 265, 328.

    ADS  Google Scholar 

  • Brandenburg, A., Moss, D., Rüdiger, G., Tuominen, I.: 1990, The nonlinear solar dynamo and differential rotation: a Taylor number puzzle? Solar Phys. 128, 243.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Dikpati, M., Brandenburg, A.: 2017, The global solar dynamo. Space Sci. Rev., 367.

  • Cameron, R.H., Schüssler, M.: 2015, The crucial role of surface magnetic fields for the solar dynamo. Science, 1333.

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3.

    Article  ADS  Google Scholar 

  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M.: 1999, Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527, 445.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Schussler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29.

    ADS  Google Scholar 

  • Clark, R.A., Ferziger, J.H., Reynolds, W.C.: 1979, Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1.

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. Lett. 518, 508.

    Article  ADS  Google Scholar 

  • Durney, B.R.: 1995, On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys. 63, 3.

    Google Scholar 

  • Gnevyshev, M.N., Ohl, A.I.: 1948, Solar activity and its terrestrial manifestations. Astron. Zh. 25, 18.

    Google Scholar 

  • Guererro, G.A., Munoz, J.D.: 2004, Kinematic solar dynamo models with a deep meridional flow. Mon. Not. Roy. Astron. Soc. 350, 317.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 4.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Rightmire, L.: 2010, Variations in the sun’s meridional flow over a solar cycle. Science 327, 1350.

    Article  ADS  Google Scholar 

  • Hazra, G., Choudhuri, A.R.: 2017, A theoretical model of the variation of the meridional circulation with the solar cycle. Mon. Not. Roy. Astron. Soc. 472, 2728.

    Article  ADS  Google Scholar 

  • Hazra, G., Karak, B.B., Choudhuri, A.R.: 2014, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287, 2456.

    Article  ADS  Google Scholar 

  • Hung, C.P., Jouve, L., Brun, A.S., Fournier, A., Talagrand, O.: 2015, Estimating the deep solar meridional circulation using magnetic observations and a dynamo model: a variational approach. Astrophys. J. 814, 151.

    Article  ADS  Google Scholar 

  • Jackiewicz, J., Serebryanskiy, A., Kholikov, S.: 2015, Meridional flow in the solar convection zone. ii. Helioseismic inversions of GONG data. Astrophys. J. 805, 133.

    Article  ADS  Google Scholar 

  • Jouve, L., Brun, A.S.: 2007, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239.

    Article  ADS  Google Scholar 

  • Karak, B.B., Cameron, R.: 2016, Babcock–Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity. Astrophys. J. 832, 94.

    Article  ADS  Google Scholar 

  • Kitchatinov, L.L., Nepomnyashchikh, A.A.: 2017, A joined model for solar dynamo and differential rotation. Astron. Lett. 43, 332.

    Article  ADS  Google Scholar 

  • Küker, M., Arlt, R., Rüdiger, G.: 1999, The Maunder minimum as due to magnetic -quenching. Astron. Astrophys. 343, 977.

    ADS  Google Scholar 

  • Küker, M., Rüdiger, G., Schultz, M.: 2001, Circulation-dominated solar shell dynamo models with positive alpha effect. Astron. Astrophys. 374, 301.

    Article  ADS  Google Scholar 

  • Lemerle, A., Charbonneau, P.: 2017, A coupled 2 × 2d Babcock–Leighton solar dynamo model. ii. Reference dynamo solutions. Astrophys. J. 834, 133.

    Article  ADS  Google Scholar 

  • Leonard, A.: 1974, Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18(A), 237.

    ADS  Google Scholar 

  • Miesch, M.S., Dikpati, M.: 2014, A three-dimensional Babcock–Leighton solar dynamo model. Astrophys. J. Lett. 785, 1.

    Article  ADS  Google Scholar 

  • Miesch, M.S., Teweldebirhan, K.: 2016, A three-dimensional Babcock–Leighton solar dynamo model: initial results with axisymmetric flows. Adv. Space Res. 58, 1571.

    Article  ADS  Google Scholar 

  • Minotti, F.O.: 2000, Self-consistent derivation of subgrid stresses for large-scale fluid equations. Phys. Rev. E 61, 429.

    Article  ADS  Google Scholar 

  • Passos, D., Charbonneau, P., Miesch, M.: 2015, Meridional circulation dynamics from 3d magnetohydrodynamic global simulations of solar convection. Astrophys. J. Lett. 800, L18.

    Article  ADS  Google Scholar 

  • Passos, D., Nandy, D., Hazra, S., Lopes, I.: 2014, A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys. 563, A18.

    Article  ADS  Google Scholar 

  • Pope, S.B.: 2000, Turbulent Flows, Cambridge University Press, UK, 587.

    Book  Google Scholar 

  • Rempel, M.: 2006, Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys. J. Lett. 647, 662.

    Article  ADS  Google Scholar 

  • Rüdiger, G., Hollerbach, R.: 2004, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, Wiley, Germany, 137.

    Book  Google Scholar 

  • Schad, A., Timmer, J., Roth, M.: 2013, Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells. Astrophys. J. Lett. 778, 38.

    Article  ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390.

    Article  ADS  Google Scholar 

  • Schumann, U.: 1975, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376.

    Article  ADS  Google Scholar 

  • Scotti, A., Meneveau, C., Lilly, D.K.: 1993, Generalized Smagorinsky model for anisotropic grids. Phys. Fluids A 5, 2306.

    Article  ADS  Google Scholar 

  • Sraibman, L., Minotti, F.: 2016, Large-scale model of the axisymmetric kinematic dynamo. Mon. Not. Roy. Astron. Soc. 456, 3715.

    Article  ADS  Google Scholar 

  • Thompson, M.J.: 2004, Helioseismology and the sun’s interior. Astron. Geophys. 45, 4.21.

    Article  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the sun’s dipole moment – new twists to the Babcock–Leighton model. Astrophys. J. Lett. 375, 761.

    Article  Google Scholar 

  • Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall Jr, T.L., Hartlep, T.: 2013, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun. Astrophys. J. Lett. 774, L29.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the University of Buenos Aires for institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sraibman.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix: Expressions of \({\boldsymbol{S}}\) Terms

Appendix: Expressions of \({\boldsymbol{S}}\) Terms

The explicit expression of the term \(S_{\phi }\) that enters Equation 11 is

On the other hand, it is convenient to express the terms depending on \({\boldsymbol{S}}\) in Equation 12 by separating them into a part associated with the differential rotation and another part associated with the meridional flow. The part corresponding to the differential rotation is written as

where

$$\begin{aligned} F_{r} =&3\cos \theta \partial _{\theta }\Omega +\sin \theta \bigl( \partial _{\theta \theta }\Omega +r\partial _{r}\Omega -2r^{2}\partial _{rr}\Omega \bigr) , \\ F_{\theta } =&\frac{3+\cos 2\theta }{2}\csc \theta \partial _{\theta } \Omega -r\sin \theta \partial _{r\theta }\Omega -r^{2}\cos \theta \partial _{rr}\Omega , \\ F_{r\theta } =&r^{2}\sin \theta \partial _{r\theta }\Omega , \\ F_{\theta r} =&r\cos \theta \partial _{r}\Omega -\sin \theta \partial _{\theta }\Omega +r\sin \theta \partial _{r\theta }\Omega , \\ F_{\theta \theta } =&\cos \theta \partial _{\theta }\Omega +\sin \theta \partial _{\theta \theta }\Omega -r^{2}\sin \theta \partial _{rr} \Omega . \end{aligned}$$

The part associated with the meridional flow is given by

where

$$\begin{aligned} G_{r} =&U_{r}+U_{\theta }\cot \theta +r\partial _{r}U_{r}+r^{2} \partial _{rr}U_{r}+r \partial _{r\theta }U_{\theta }, \\ G_{\theta } =&U_{r}\cot \theta +U_{\theta }\csc ^{2}\theta + \partial _{\theta \theta }U_{\theta }-r\partial _{r}U_{\theta }+r \partial _{r\theta }U_{r}, \\ G_{r\theta } =&-U_{\theta }+\partial _{\theta }U_{r}+r \partial _{r}U _{\theta }, \\ G_{rr} =&\partial _{r}U_{r}, \\ G_{\theta \theta } =&U_{r}\partial _{\theta }U_{\theta }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sraibman, L., Minotti, F. Large-scale Model of the Axisymmetric Dynamo with Feedback Effects. Sol Phys 294, 14 (2019). https://doi.org/10.1007/s11207-018-1350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1350-1

Keywords

Navigation