Skip to main content
Log in

Electrical conductivity of the neutron star crust at low temperatures

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The electrical conductivity of the neutron star crust at low temperatures is calculated by taking into account the mixing of the electron wave functions due to the interaction with the crystal lattice of atomic nuclei. We show that the previously existed model of exponential reduction of the electron-ion scattering rate can lead to an overestimation of the electrical conductivity by several orders of magnitude. We propose a simple interpolation formula for use in applications that joins the previously known results of calculating the electrical conductivity at high temperatures with the low-temperature asymptotics found here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Baiko, A. D. Kaminker, A. Y. Potekhin, et al., Phys. Rev. Lett. 81, 5556 (1998).

    Article  ADS  Google Scholar 

  2. D. A. Baiko, A. D. Kaminker, and D. G. Yakovlev, Phys. Rev. E 64, 057402 (2001).

    Article  ADS  Google Scholar 

  3. D. A. Baiko and D. G. Yakovlev, Astron. Lett. 21, 635 (1995).

    Google Scholar 

  4. D. A. Baiko and D. G. Yakovlev, Astron. Lett. 22, 708 (1996).

    ADS  Google Scholar 

  5. D. A. Baiko, Candidate’s Dissertation in Physics and Mathematics (Phys. Tech. Inst. Ioffe, St. Petersburg, 2000).

    Google Scholar 

  6. D.A. Baiko, Phys. Rev. E 66, 056405 (2002).

    Article  ADS  Google Scholar 

  7. D. P. Barsukov, E. M. Kantor, and A. I. Tsygan, Astron. Rep. 50, 159 (2006).

    Article  ADS  Google Scholar 

  8. D. P. Barsukov, E. M. Kantor, and A. I. Tsygan, Astron. Rep. 51, 469 (2007).

    Article  ADS  Google Scholar 

  9. D. P. Barsukov, P. I. Polyakova, and A. I. Tsygan, Astron. Rep. 53, 86 (2009).

    Article  ADS  Google Scholar 

  10. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1982).

    Google Scholar 

  11. V. S. Beskin and E. E. Nokhrina, Astrophys. Space Sci. 308, 589 (2007).

    ADS  Google Scholar 

  12. P. A. Boldin and S. B. Popov, Mon. Not. R. Astron. Soc. 407, 1090 (2010).

    Article  ADS  Google Scholar 

  13. A. I. Chugunov and P. Haensel, Mon. Not. R. Astron. Soc. 381, 1143 (2007).

    Article  ADS  Google Scholar 

  14. A. I. Chugunov and D. G. Yakovlev, Astron. Rep. 49, 724 (2005).

    Article  ADS  Google Scholar 

  15. E. Flowers and N. Itoh, Astrophys. J. 206, 218 (1976).

    Article  ADS  Google Scholar 

  16. V. F. Gantmakher and E. A. Levinson, Carrier Scattering in Metals and Semiconductors (Moscow, Nauka 1984; North-Holland, New York, 1987).

    Google Scholar 

  17. O. Y. Gnedin, D. G. Yakovlev, and A. Y. Potekhin, Mon. Not. R. Astron. Soc. 324, 725 (2001).

    Article  ADS  Google Scholar 

  18. M.E. Gusakov, A.D. Kaminker, D.G. Yakovlev, et al., Mon. Not. R. Astron. Soc. 363, 555 (2005)

    Article  ADS  Google Scholar 

  19. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure (Springer-Verlag, New York, 2007).

    Google Scholar 

  20. B. Jancovici, Nuovo Cimento 25, 428 (1962).

    Article  MATH  Google Scholar 

  21. L.D. Landau and I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 7, 379 (1937).

    Google Scholar 

  22. D. R. Lorimer, arXiv:1008.1928 (2010).

  23. C. J. Pethick and V. Thorsson, Phys. Rev. D 56, 7548 (1997).

    Article  ADS  Google Scholar 

  24. J. A. Pons, J. A. Miralles, and U. Geppert, Astron. Astrophys. 496, 207 (2009).

    Article  ADS  MATH  Google Scholar 

  25. S. B. Popov, J. A. Pons, J. A. Miralles, et al., Mon. Not. R. Astron. Soc. 401, 2675 (2010).

    Article  ADS  Google Scholar 

  26. A. Y. Potekhin, Astron. Astrophys. 351, 787 (1999).

    ADS  Google Scholar 

  27. A. Y. Potekhin, D. A. Baiko, P. Haensel, et al., Astron. Astrophys. 346, 345 (1999).

    ADS  Google Scholar 

  28. M. E. Raikh and D. G. Yakovlev, Astrophys. Space Sci. 87, 193 (1982).

    Article  ADS  Google Scholar 

  29. P. S. Shternin, D. G. Yakovlev, C. O. Heinke, et al., Mon. Not. R. Astron. Soc. Lett. 412, L108 (2011).

    Article  ADS  Google Scholar 

  30. P. S. Shternin and D. G. Yakovlev, Phys. Rev. D 74, 043004 (2006).

    Article  ADS  Google Scholar 

  31. P. S. Shternin, J. Phys. A: Math. Theor. 42, 205 501 (2008).

    MathSciNet  Google Scholar 

  32. V. A. Urpin and D. G. Yakovlev, Sov. Astron. 24, 425 (1980).

    ADS  Google Scholar 

  33. M. Vegelius and A. Melatos, Astrophys. J. 717, 404 (2010).

    Article  ADS  Google Scholar 

  34. D. G. Yakovlev, W. C. G. Ho, P. S. Shternin, et al., Mon. Not. R. Astron. Soc. 411, 1977 (2011).

    Article  ADS  Google Scholar 

  35. J. Ziman, Electrons and Photons (Clarendon, Oxford, 1960; Inostr. Liter., Moscow, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Chugunov.

Additional information

Original Russian Text © A.I. Chugunov, 2012, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2012, Vol. 38, No. 1, pp. 28–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugunov, A.I. Electrical conductivity of the neutron star crust at low temperatures. Astron. Lett. 38, 25–44 (2012). https://doi.org/10.1134/S1063773712010021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773712010021

Keywords

Navigation