Skip to main content
Log in

A new scenario for impulsive bursts of hard electromagnetic radiation in space plasma

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We discuss the peculiarities of fast magnetic reconnection in the essentially nonequilibrium magnetosphere of a compact relativistic object: a neutron star, a magnetar, a white dwarf. Such a magnetosphere is produced by the interaction of a large-amplitude shock wave with a strong stellar magnetic field. We present an analytical solution of the generalized two-dimensional problem on the magnetosphere’s structure, the shape of its boundary, and the direct and reverse currents in a reconnecting current sheet. The uncompensated magnetic force acting on the reverse current is determined. Characteristic parameters of the nonequilibrium magnetosphere of compact stellar objects are estimated. We show that the excess magnetic energy of the magnetosphere is comparable to the mechanical energy brought into it by the shock at the instant of impact. The possibility of particle acceleration to enormous energies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neutron Stars and Pulsars, Ed. by W. Becker (Springer-Verlag, Berlin, 2009).

    Google Scholar 

  2. P. F. Chen, C. Fang, Y. H. Tang, et al., Astrophys. J. 513, 516 (1999).

    Article  ADS  Google Scholar 

  3. K. S. Cheng and G. E. Romero, Cosmic Gamma-Ray Sources (Kluwer Acad., Dordrecht, 2004).

    Google Scholar 

  4. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Ed. by M. Colpi, P. Casella, V. Gorini, et al. (Springer, Dordrecht, 2009).

    Google Scholar 

  5. R. M. Crockett, J. R. Maund, S. J. Smartt, et al., Astrophys. J. 672, L99 (2008).

    Article  ADS  Google Scholar 

  6. A. E. Egorov and K. A. Postnov, Astron. Lett. 35, 241 (2009).

    Article  ADS  Google Scholar 

  7. A.G. Frank and S. N. Satunin, Fiz. Plazmy 37(2011, in press).

  8. J. Granot and A. Loeb, Astrophys. J. 593, L81 (2003).

    Article  ADS  Google Scholar 

  9. J. Granot and E. Ramirez-Ruiz, Astrophys. J. 609, L9 (2004).

    Article  ADS  Google Scholar 

  10. K. Hurley, S. E. Boggs, D. M. Smith, et al., Nature 434, 1098 (2005).

    Article  ADS  Google Scholar 

  11. V. S. Imshennik and D. K. Nadyozhin, Astrophys. Space Phys. Rev. 8, 156 (1989).

    Google Scholar 

  12. Ya. N. Istomin and B. V. Komberg, Astron. Rep. 46, 908 (2002).

    Article  ADS  Google Scholar 

  13. Ya.N. Istomin and F. L. Soloviev, Astron. Rep. 53, 904 (2009).

    Article  ADS  Google Scholar 

  14. E. F. Keane, M. Kramer, A. G. Lyne, et al., Mon. Not. R. Astron. Soc., (2011, in press).

  15. L. D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  16. D. A. Larrabee, R. V. E. Lovelace, and M. M. Romanova, Astrophys. J. 586, 72 (2003).

    Article  ADS  Google Scholar 

  17. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  18. D. R. Lorimer, M. Bailes, M. A. McLaughlin, et al., Science 318, 777 (2007).

    Article  ADS  Google Scholar 

  19. R. V. E. Lovelace, L. Turner, and M. M. Romanova, Astrophys. J. 652, 1494 (2006).

    Article  ADS  Google Scholar 

  20. M. Lyutikov, Mon. Not. R. Astron. Soc. 346, 540 (2003).

    Article  ADS  Google Scholar 

  21. M. Lyutikov, Mon. Not. R. Astron. Soc. 367, 1594 (2006).

    Article  ADS  Google Scholar 

  22. K. Mukerjee, P. Agrawal, B. Paul, et al., Astrophys. J. 548, 368 (2001).

    Article  ADS  Google Scholar 

  23. P. Oberts, Geomagn. Aeron. 13, 896 (1973).

    ADS  Google Scholar 

  24. A. V. Oreshina and B. V. Somov, Astron. Lett. 35, 195 (2009).

    Article  ADS  Google Scholar 

  25. I. V. Oreshina and B. V. Somov, Izv. Ross. Akad. Nauk, Ser. Fiz. 63, 1543 (1999).

    Google Scholar 

  26. I. V. Oreshina and B. V. Somov, J. Math. Sci. 172, 6 (2011).

    Article  MathSciNet  Google Scholar 

  27. B. Paczynski, Acta Astron. 51, 1 (2001).

    ADS  Google Scholar 

  28. Z. Paragi, G. B. Taylor, C. Kouveliotou, et al., Nature 463, 516 (2010).

    Article  ADS  Google Scholar 

  29. K. A. Postnov and L. R. Yungelson, Living Rev. Relativ. 9, 6 (2006).

    ADS  Google Scholar 

  30. T. Shimizu and M. Ugai, Phys. Plasma 10, 921 (2003).

    Article  ADS  Google Scholar 

  31. A. M. Soderberg, E. Nakar, E. Berger, and S. R. Kulkarni, Astrophys. J. 638, 930 (2006).

    Article  ADS  Google Scholar 

  32. B. V. Somov, Plasma Astrophysics. Part I: Fundamentals and Practice (Springer, New York, 2006).

    Google Scholar 

  33. B. V. Somov, Plasma Astrophysics. Part II: Reconnection and Flares (Springer, New York, 2007).

    Google Scholar 

  34. B. V. Somov and S. I. Syrovatskii, Sov. Phys. JETP 34, 460 (1971).

    Google Scholar 

  35. B.V. Somov and S. I. Syrovatskii, Proc. P.N. Lebedev Phys. Inst., Vol. 74, ed. N. G. Basov, New York and London, Consultants Bureau, p. 13 (1974).

    Google Scholar 

  36. B. V. Somov and S. I. Syrovatskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 39, 375 (1975).

    ADS  Google Scholar 

  37. B. V. Somov, A. V. Oreshina, I. V. Oreshina, and N. I. Shakura, Adv. Space Res. 32, 1087 (2003).

    Article  ADS  Google Scholar 

  38. S. I. Syrovatskii, Sov. Phys. JETP 27, 763 (1968).

    ADS  Google Scholar 

  39. S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971).

    ADS  Google Scholar 

  40. M. Ugai, Phys. Plasmas 15, 082306 (2009).

    Article  ADS  Google Scholar 

  41. T. Unti and G. Atkinson, J. Geophys. Res., Space Phys. 73, 7319 (1968).

    Article  ADS  Google Scholar 

  42. S. Zenitani and M. Hoshino, Astrophys. J. 670, 702 (2007).

    Article  ADS  Google Scholar 

  43. S. Zenitani, M. Hesse, and A. Klimas, Astrophys. J. 696, 1385 (2009).

    Article  ADS  Google Scholar 

  44. V. N. Zhigulev and E. A. Romishevskii, Dokl. Akad. Nauk SSSR 127, 1001 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Somov.

Additional information

Original Russian Text © B.V. Somov, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 10, pp. 740–753.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somov, B.V. A new scenario for impulsive bursts of hard electromagnetic radiation in space plasma. Astron. Lett. 37, 679–691 (2011). https://doi.org/10.1134/S1063773711100069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773711100069

Keywords

Navigation