Skip to main content
Log in

Physics of Quadrupolar Compact Astrophysical Objects

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The pursuit of understanding and testing general relativity involves both theoretical and observational efforts. To study the strong gravitational fields near astrophysical black holes and compact objects, which are not directly accessible, researchers often assume that these black holes are described by the Kerr solution. However, there are other objects that can mimic the properties of a black hole, making it challenging to connect theoretical models to observations. Therefore, it is important to explore deviations by introducing small additional parameters as extra physical degrees of freedom in order to establish a link between the models and observational data. This paper presents the development of an alternative background that incorporates these additional parameters. The subsequent analysis includes examining the expected astrophysical properties and validating them through comparison with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. Prolate spheroidal coordinates are three-dimensional orthogonal coordinates that result from rotating the two-dimensional elliptic coordinates about the focal axis of the ellipse.

  2. The same method has been used in colliding electromagnetic gravitational waves, in the cylindrical waves of Einstein and Rosen and the gravitational field of a very large plate of thin matter [8].

  3. Boyer’s condition states the boundary of any stationary and barotropic perfect fluid body is an equipotential surface.

  4. These various models are essentially composed of different combinations of epicyclic frequencies and the Keplerian frequency [19].

REFERENCES

  1. F. D. Ryan, Phys. Rev. D 52, 5707 (1995).

    Article  ADS  CAS  Google Scholar 

  2. D. M. Zipoy, J. Math. Phys. 7, 1137 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  3. B. H. Voorhees, Phys. Rev. D 2, 2119 (1970). https://link.aps.org/doi/10.1103/PhysRevD.2.2119

    Article  ADS  Google Scholar 

  4. G. Erez and N. Rosen, Bull. Res. Council Israel 8F, 47 (1959).

    Google Scholar 

  5. R. Geroch, J. Math. Phys. 11, 2580 (1970).

    Article  ADS  Google Scholar 

  6. H. Quevedo, arXiv: 1003.4344 (2011).

  7. H. Quevedo, Phys. Rev. D 39, 2904 (1989). https://link.aps.org/doi/10.1103/PhysRevD.39.2904

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. J. Horský, Phys. Lett. A 28, 599 (1969).

    Article  ADS  Google Scholar 

  9. S. Faraji, Universe 8, 195 (2022).

    Article  ADS  Google Scholar 

  10. M. A. Abramowicz, Acta Astron. 24, 45 (1974).

    ADS  Google Scholar 

  11. M. Kozlowski, M. Jaroszynski, and M. A. Abramowicz, Astron. Astrophys. 63, 209 (1978).

    ADS  Google Scholar 

  12. B. Paczyńsky and P. J. Wiita, Astron. Astrophys. 500, 203 (1980).

    ADS  Google Scholar 

  13. M. A. Abramowicz, Nature (London, U.K.) 294, 235 (1981).

    Article  ADS  Google Scholar 

  14. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata, Phys. Rev. Lett. 107, 051102 (2011); https://link.aps.org/doi/10.1103/PhysRevLett.107.051102

  15. J. A. Faber and F. A. Rasio, Living Rev. Relat. 15, 8 (2012); arXiv: 1204.3858.

  16. S. Faraji and A. Trova, Astron. Astrophys. 654, A100 (2021); arXiv: 2011.05945.

    Article  ADS  Google Scholar 

  17. L. Stella and M. Vietri, Astrophys. J. Lett. 492, L59 (1998); astro-ph/9709085.

    Article  ADS  Google Scholar 

  18. L. Stella and M. Vietri, Phys. Rev. Lett. 82, 17 (1999). https://link.aps.org/doi/10.1103/PhysRevLett.82.17

    Article  ADS  CAS  Google Scholar 

  19. G. Török, M. A. Abramowicz, W. Kluźniak, and Z. Stuchlík, Astron. Astrophys. 436, 1 (2005).

    Article  ADS  Google Scholar 

  20. O. Zanotti, L. Rezzolla, and J. A. Font, Mon. Not. R. Astron. Soc. 341, 832 (2003). https://doi.org/10.1046/j.1365-8711.2003.06474.x

    Article  ADS  Google Scholar 

  21. L. Rezzolla, S. Yoshida, and O. Zanotti, Mon. Not. R. Astron. Soc. 344, 978 (2003). https://doi.org/10.1046/j.1365-8711.2003.07023.x

    Article  ADS  Google Scholar 

  22. P. J. Montero, L. Rezzolla, and S. Yoshida, Mon. Not. R. Astron. Soc. 354, 1040 (2004); astro-ph/0407642.

    Article  ADS  CAS  Google Scholar 

  23. L. Qian, M. A. Abramowicz, P. C. Fragile, J. Horák, M. Machida, and O. Straub, Astron. Astrophys. 498, 471 (2009); arXiv: 0812.2467.

    Article  ADS  Google Scholar 

  24. M. Wielgus, P. C. Fragile, Z. Wang, and J. Wilson, Mon. Not. R. Astron. Soc. 447, 3593 (2015); arXiv: 1412.4561.

    Article  ADS  Google Scholar 

  25. S. Faraji and A. Trova, Mon. Not. R. Astron. Soc. 513, 3399 (2022); arXiv: 2103.03229.

    Article  ADS  Google Scholar 

  26. S. Faraji and A. Trova, Mon. Not. R. Astron. Soc. 525, 1126 (2023); arXiv: 2209.13471.

    Article  ADS  Google Scholar 

Download references

Funding

Funding for this research has been provided by the excellence cluster QuantumFrontiers funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967. The author acknowledges the research training group GRK 1620 “Models of Gravity” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Faraji.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Paper presented at the Fifth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Yerevan, Armenia on June 12–16, 2023. Published by the recommendation of the special editors: R. Ruffini, N. Sahakyan and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, S. Physics of Quadrupolar Compact Astrophysical Objects. Astron. Rep. 67 (Suppl 2), S207–S213 (2023). https://doi.org/10.1134/S1063772923140068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923140068

Keywords:

Navigation