Skip to main content
Log in

Calibration of Uncertainties of the Gaia DR3 Catalog Based on Data on Wide Binary Stars of the Galaxy Field

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The catalog of wide binary stars [1], created on the basis of Gaia EDR3 data and including more than a million pairs, was used to analyze Gaia DR3 data obtained independently for their components. It is shown that the spatial heterogeneity of the catalog reflects the Gaia scanning law. The change in the spatial density of binary stars in the catalog with increasing distance from the Sun has been studied. By comparison with the model distribution, it is shown that the catalog contains approximately 2.5 times fewer binary stars than would be expected in the absence of spatial incompleteness. It is confirmed that the radius of spatial completeness of the catalog is on average close to 200 pc and depends on the absolute magnitude of the main component. The spatial density of binary stars in the catalog depends weakly on the difference in the magnitudes of the components, and significantly depends on the physical distance between the components. The incompleteness of the catalog in relation to pairs with a distance between components less than 100 AU occurs already at a distance of 25 pc from the Sun. Comparison of the characteristics of components of the same pair independently determined within the Gaia DR3 catalog allowed us to study how the probability of a non-random combination of components is related to the similarity of their characteristics. A high correlation between the degree of agreement between the characteristics and the reliability of the pair was found for radial velocities. Qualitative agreement is observed for metallicity [Fe/H] estimates and, to a lesser extent, for absorption \({{A}_{G}}\) estimates. No agreement was found for the ages of the stars, which indicates their great uncertainty in the ensemble, consisting mainly of main sequence stars. At the same time, age estimates for pairs with evolved components show significantly better agreement than for the dataset as a whole. Using the parameters of the components of the pairs from Gaia DR3, an independent estimate of the uncertainties in the radial velocities and metallicities depending on the apparent magnitude of the sources was performed. Estimates of the probable median values of errors in the radial velocities and metallicities of Gaia DR3 sources are proposed. Depending on the apparent magnitude, they exceed the median error values given in the catalog: for radial velocities by 1.5–3 times, for metallicities [Fe/H] by 7–25 times. The paper is based on a talk presented at the astrophysical memorial seminar “Novelties in Understanding the Evolution of Binary Stars”, dedicated to the 90th anniversary of Professor M.A. Svechnikov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. https://www.pas.rochester.edu/emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt

  2. https://www.cosmos.esa.int/gaia

  3. https://www.cosmos.esa.int/web/gaia/dpac/consortium

REFERENCES

  1. K. El-Badry, H.-W. Rix, and T. M. Heintz, Mon. Not. R. Astron. Soc. 506, 2269 (2021).

    Article  ADS  Google Scholar 

  2. G. Duchêne and A. Kraus, Ann. Rev. Astron. Astrophys. 51, 269 (2013); arXiv: 1303.3028 [astro-ph.SR].

    Article  ADS  Google Scholar 

  3. M. Marks and P. Kroupa, Astron. Astrophys. 543, A8 (2012); arXiv: 1205.1508 [astro-ph.GA].

    Article  ADS  Google Scholar 

  4. M. R. Bate, in Living Together: Planets, Host Stars and Binaries, Ed. by S. M. Rucinski, G. Torres, and M. Zejda, ASP Conf. Ser. 496, 37 (2015).

    Google Scholar 

  5. A. Tokovinin and O. Kiyaeva, Mon. Not. R. Astron. Soc. 456, 2070 (2016); arXiv: 1512.00278 [astro-ph.SR].

    Article  ADS  Google Scholar 

  6. M. Moe and D. S. Rosanne, Astrophys. J. Suppl. 230, 15 (2017); arXiv: 1606.05347 [astro-ph.SR].

    Article  Google Scholar 

  7. E. I. Popova, A. V. Tutukov, and L. R. Yungelson, Astrophys. Space Sci. 88, 55 (1982).

    Article  ADS  Google Scholar 

  8. S. Vereshchagin, A. Tutukov, L. Iungelson, Z. Kraicheva, and E. Popova, Astrophys. Space Sci. 142, 245 (1988).

    Article  ADS  Google Scholar 

  9. M. Marks, P. Kroupa, and J. Dabringhausen, Astron. Astrophys. 659, 98 (2022).

    Article  Google Scholar 

  10. M. Rozner and H. B. Perets, arXiv: 2304.02029 [astro-ph.GA] (2023).

  11. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, et al., Astron. Astrophys. 595, A1 (2016); arXiv: 1609.04153 [astro-ph.IM].

    Article  Google Scholar 

  12. K. El-Badry, H.-W. Rix, H. Tian, G. Duchêne, and M. Moe, Mon. Not. R. Astron. Soc. 489, 5822 (2019); arXiv: 1906.10128 [astro-ph.SR].

    Article  ADS  Google Scholar 

  13. S. A. Sapozhnikov, D. A. Kovaleva, O. Yu. Malkov, and A. Yu. Sytov, Astron. Rep. 64, 756 (2020); arXiv: 2012.06115 [astro-ph.SR].

    Article  ADS  Google Scholar 

  14. A. A. Tokovinin, Astron. Astrophys. 360, 997 (2000).

    ADS  Google Scholar 

  15. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 649, A1 (2021), arXiv: 2012.01533 [astro-ph.GA].

    Article  Google Scholar 

  16. D. Pourbaix, F. Arenou, P. Gavras, É. Gosset, et al., Gaia DR3 Documentation (Eur. Space Agency, Gaia Data Process. Anal. Consortium, 2022), ID. 7.

  17. D. Kovaleva, O. Malkov, S. Sapozhnikov, D. Chulkov, and N. Skvortsov, Comm. Comput. Inform. Sci. 1427, 125 (2021).

    Article  Google Scholar 

  18. D. Chulkov and O. Malkov, Mon. Not. R. Astron. Soc. 517, 2925 (2022); arXiv: 2206.00604 [astro-ph.SR].

    Article  ADS  Google Scholar 

  19. D. Katz, P. Sartoretti, A. Guerrier, P. Panuzzo, et al., arXiv: 2206.05902 [astro-ph.GA] (2022).

  20. O. L. Creevey, R. Sordo, F. Pailler, Y. Fremat, et al., arXiv: 2206.05864 [astro-ph.GA] (2022).

  21. M. Foley, A. Goodman, C. Zucker, S. Bialy, et al., AAS Meeting Abstr. 54, 333.03 (2022).

  22. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, M. Demleitner, and R. Andrae, Astron. J. 161, 147 (2021); arXiv: 2012.05220 [astro-ph.SR].

    Article  ADS  Google Scholar 

  23. W. I. Hartkopf, B. D. Mason, and C. E. Worley, Astron. J. 122, 3472 (2001).

    Article  ADS  Google Scholar 

  24. N. V. Kharchenko, A. E. Piskunov, E. Schilbach, S. Röser, and R.-D. Scholz, Astron. Astrophys. 585, A101 (2016).

    Article  ADS  Google Scholar 

  25. J. Bovy, Mon. Not. R. Astron. Soc. 470, 1360 (2017); arXiv: 1704.05063 [astro-ph.GA].

    Article  ADS  Google Scholar 

  26. M. J. Pecaut and E. E. Mamajek, Astrophys. J. Suppl. 208, 9 (2013); arXiv: 1307.2657 [astro-ph.SR].

    Article  Google Scholar 

  27. X.-Q. Cui, Y.-H. Zhao, Y.-Q. Chu, G.-P. Li, et al., Res. Astron. Astrophys. 12, 1197 (2012).

    Article  ADS  Google Scholar 

  28. M. B. Taylor, in Astronomical Data Analysis Software and Systems XIV, Ed. by P. Shopbell, M. Britton, and R. Ebert, ASP Conf. Ser. 347, 29 (2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses gratitude to the anonymous reviewer for stimulating comments and recommendations that made it possible to improve the work.

Funding

The work uses data from Gaia space missionFootnote 2 of the European Space Agency (ESA), processed by the Gaia data processing consortium—Data Processing and Analysis Consortium (DPAC)Footnote 3. An interactive graphical visualizer and analyzer for tabular data TOPCAT [28] was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kovaleva.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by T. Sokolova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, D.A. Calibration of Uncertainties of the Gaia DR3 Catalog Based on Data on Wide Binary Stars of the Galaxy Field. Astron. Rep. 67, 938–950 (2023). https://doi.org/10.1134/S106377292309007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292309007X

Keywords:

Navigation