Skip to main content
Log in

The Structure of the Universe in the Quasar Absorption Spectra

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An analysis of the absorption lines observed in the spectra of quasars makes it possible to study the evolution of the structure of the Universe up to redshifts \(z \sim 5\). The observed clustering of C IV lines demonstrates the multiple birth of low-mass galaxies in separate structural elements—filaments and “pancakes.” This ensures their subsequent regular hierarchical merger in the central galaxy or group of galaxies. Remnants of the early “pancakes” are observed today as the Local Group, groups around the Andromeda and Centaurus galaxies, and other small groups of galaxies. In turn, the observed clustering of Lyman-alpha lines shows that starless dark matter (DM) halos are also formed in structural elements and their hierarchical clustering leads to the formation of massive starless dark matter halos of moderate density, which also appear in numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

REFERENCES

  1. Ya. Zeldovich, Astron. Astrophys. 5, 84 (1970).

    ADS  Google Scholar 

  2. Ya. Zel’dovich and I. Novikov, Relativistic Astrophysics, Vol. 2: The Structure and Evolution of the Universe (N-auka, Moscow, 1975; Univ. Chicago Press, 1983).

  3. S. Shandarin and Ya. Zeldovich, Rev. Mod. Phys. 61, 185 (1989).

    Article  ADS  Google Scholar 

  4. M. Demiański and A. Doroshkevich, Mon. Not. R. Astron. Soc. 306, 779 (1999).

    Article  ADS  Google Scholar 

  5. L. Thompson and S. Gregory, Astrophys. J. 220, 809 (1978).

    Article  ADS  Google Scholar 

  6. S. Gregory and L. Thompson, Astrophys. J. 222, 784 (1978).

    Article  ADS  Google Scholar 

  7. M. Ramella, M. Geller, and J. Huckhra, Astrophys. J. 384, 396 (1992).

    Article  ADS  Google Scholar 

  8. S. Ikeuchi, Astrophys. Space Sci. 118, 509 (1986).

    Article  ADS  Google Scholar 

  9. L. Gao, S. White, A. Jenkins, C. Frenk, and V. Springel, Mon. Not. R. Astron. Soc. 363, 379 (2005).

    Article  ADS  Google Scholar 

  10. V. Springel, S. White, A. Jenkins, C. S. Frenk, et al., Nature (London, U.K.) 435, 629 (2005).

    Article  ADS  Google Scholar 

  11. M. Boylan-Kolchin, V. Springel, S. White, and A. Jenkins, Mon. Not. R. Astron. Soc. 398, 1150 (2009).

    Article  ADS  Google Scholar 

  12. A. Klypin, S. Trujillo-Gomez, and J. Primack, Astrophys. J. 740, 102 (2011).

    Article  ADS  Google Scholar 

  13. M. Demiański, A. Doroshkevich, S. Pilipenko, and S. Gottlober, Mon. Not. R. Astron. Soc. 414, 1813 (2011).

    Article  ADS  Google Scholar 

  14. A. Klypin, G. Yepes, S. Gottloeber, F. Prada, and S. Hess, Mon. Not. R. Astron. Soc. 457, 4 (2016).

    Article  Google Scholar 

  15. Y. Kim, R. Smith, and J. Shin, Astrophys. J. 935, 71 (2022).

    Article  ADS  Google Scholar 

  16. M. Walker, M. Mateo, E. Olszewski, J. Peñarrubia, N. W. Evans, and G. Gilmore, Astrophys. J. 704, 1274 (2009).

    Article  ADS  Google Scholar 

  17. J. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017).

    Article  ADS  Google Scholar 

  18. I. de Martino, S. Chakrebarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, Universe 6, 107 (2020).

    Article  ADS  Google Scholar 

  19. M. Pawlowski, J. Pflamm-Altenburg, and P. Kroupa, Mon. Not. R. Astron. Soc. 423, 1109 (2012).

    Article  ADS  Google Scholar 

  20. O. Müller, M. Pawlowski, H. Jerjen, and F. Lelli, Science (Washington, DC, U. S.) 359, 534 (2018).

    Article  ADS  Google Scholar 

  21. A. Helmi, F. van Leeuwen, P. J. McMillan, D. Massari, et al., Astron. Astrophys. 616, A12 (2018).

    Article  Google Scholar 

  22. M. Pawlowski and P. Kroupa, Mon. Not. R. Astron. Soc. 491, 3042 (2020).

    Article  ADS  Google Scholar 

  23. D. Makarov and I. Karachentsev, Mon. Not. R. Astron. Soc. 412, 2498 (2011).

    Article  ADS  Google Scholar 

  24. A. Doroshkevich, D. Tucker, S. Allam, and M. Way, Astron. Astrophys. 418, 7 (2004).

    Article  ADS  Google Scholar 

  25. L. Jiang, K. Finlator, S. Cohen, E. Egami, et al., Astrophys. J. 816, 16 (2016).

    Article  ADS  Google Scholar 

  26. M. Ginolfi, E. Piconcelli, L. Zappacosta, G. C. Jones, et al., Nat. Commun. 13, 4574 (2022).

    Article  ADS  Google Scholar 

  27. Y. Ning, L. Jiang, Z. Zheng, and J. Wu, Astrophys. J. 926, 230 (2022).

    Article  ADS  Google Scholar 

  28. R. B. Partridge and P. J. E. Peebles, Astrophys. J. 147, 868 (1967).

    Article  ADS  Google Scholar 

  29. R. B. Partridge and P. J. E. Peebles, Astrophys. J. 148, 377 (1967).

    Article  ADS  Google Scholar 

  30. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  31. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, L101 (1967).

    Article  ADS  Google Scholar 

  32. J. A. Fillmore and P. Goldreich, Astrophys. J. 281, 1 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  33. J. M. Bardeen, J. Bond, N. Kaiser, and A. Szalay, Astrophys. J. 304, 15 (1986).

    Article  ADS  Google Scholar 

  34. A. Gurevich and K. Zybin, Phys. Usp. 38, 687 (1995).

    Article  ADS  Google Scholar 

  35. M. McQuinn, Ann. Rev. Astron. Astrophys. 54, 313 (2016).

    Article  ADS  Google Scholar 

  36. A. V. Zasov, A. S. Saburova, A. V. Khoperskov, and S. A. Khoperskov, Phys. Usp. 60, 3 (2017).

    Article  ADS  Google Scholar 

  37. T. Naab and J. Ostriker, Ann. Rev. Astron. Astrophys. 55, 59 (2017).

    Article  ADS  Google Scholar 

  38. J. Tumlinson, M. Peebles, and J. Werk, Ann. Rev. Astron. Astrophys. 55, 389 (2017).

    Article  ADS  Google Scholar 

  39. R. Wechsler and J. Tinker, Ann. Rev. Astron. Astrophys. 56, 435 (2018).

    Article  ADS  Google Scholar 

  40. P. Salucci, Astron. Astrophys. Rev. 27, 2 (2019).

    Article  ADS  Google Scholar 

  41. T. Zavala and C. Frenk, Galaxy 7, 81 (2019).

    Article  ADS  Google Scholar 

  42. D. Martinez-Delgado, R. Läsker, M. Sharina, E. Toloba, et al., Astron. J. 151, 96 (2016).

    Article  ADS  Google Scholar 

  43. J. Roman and I. Trujillo, Mon. Not. R. Astron. Soc. 468, 703 (2017).

    Article  ADS  Google Scholar 

  44. J. Roman and I. Trujillo, Mon. Not. R. Astron. Soc. 468, 4039 (2017).

    Article  ADS  Google Scholar 

  45. D. D. Shi, X. Z. Zheng, H. B. Zhao, Z. Z. Pan, et al., Astrophys. J. 846, 26 (2017); arXiv: 1708.00013 [astro-ph.GA].

    Article  ADS  Google Scholar 

  46. M. Demiański, A. Doroshkevich, and T. Larchenkova, Astron. Lett. 48, 361 (2022).

    Article  ADS  Google Scholar 

  47. T.-S. Kim, R. Carswell, and D. Ranquist, Mon. Not. R. Astron. Soc. 456, 3509 (2016).

    Article  ADS  Google Scholar 

  48. T.-S. Kim, R. Carswell, C. Mongardi, A. Partl, J. Mucket, P. Barai, and S. Cristiani, Mon. Not. R. Astron. Soc. 457, 2005 (2016).

    Article  ADS  Google Scholar 

  49. M. Demiański and A. Doroshkevich, Astron. Rep. 52, 859 (2018).

    Article  ADS  Google Scholar 

  50. B. Wakker, A. Hernfandes, D. French, T.-S. Kim, B. D. Oppenheimer, and B. D. Savage, Astrophys. J. 814, 40 (2015).

    Article  ADS  Google Scholar 

  51. S. E. I. Bosman, G. D. Becker, M. G. Haehnelt, P. C. Hewett, R. G. McMahon, D. J. Mortlock, C. Simpson, and B. P. Venemans, Mon. Not. R. Astron. Soc. 470, 1919 (2017).

    Article  ADS  Google Scholar 

  52. A. Codoreanu, E. V. Ryan-Weber, L. A. Garcia, N. H. M. Crighton, G. Becker, M. Pettini, P. Madau, and B. Venemans, Mon. Not. R. Astron. Soc. 481, 4940 (2018).

    ADS  Google Scholar 

  53. V. D’Odorico, K. Finlator, S. Cristiani, G. Cupani, et al., Mon. Not. R. Astron. Soc. 512, 2389 (2022).

    Article  ADS  Google Scholar 

  54. A. Boksenberg and W. Sargent, Astrophys. J. Suppl. 218, 7 (2015).

    Article  Google Scholar 

  55. M. Demiański, A. Doroshkevich, and V. Turchaninov, Mon. Not. R. Astron. Soc. 371, 915 (2006).

    Article  ADS  Google Scholar 

  56. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, et al., Astrophys. J. Suppl. 192, 18 (2011).

    Article  Google Scholar 

  57. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al., Astron. Astrophys. 594, 13 (2016).

    Article  Google Scholar 

  58. A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, J. Cosmol. Astropart. Phys. 10, 044 (2019).

  59. M. Demiański, A. Doroshkevich, T. Larchenkova, and S. Pilipenko, Astron. Rep. 66, 766 (2022).

    Article  ADS  Google Scholar 

  60. A. Doroshkevich, Sov. Astron. 24, 152 (1980).

    ADS  Google Scholar 

  61. J. Shull, B. Smith, and C. Danforth, Astrophys. J. 759, 23 (2012).

    Article  ADS  Google Scholar 

  62. M. Demyanskii, A. Doroshkevich, T. Larchenkova, S. Pilipenko, and S. Gottlober, Mon. Not. R. Astron. Soc. (2023, in press).

  63. Y. Harikane, A. Inoue, K. Mavatan, T. Hashimoto, et al., Astrophys. J. 929, 1 (2022).

    Article  ADS  Google Scholar 

  64. R. Lee, F. Pacucci, P. Natarajan, and A. Loeb, arXiv: 2209.06830 [astro-ph.GA] (2022).

  65. M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063534 (2005).

  66. T. Ishiyama, Astrophys. J. 788, 27 (2014).

    Article  ADS  Google Scholar 

  67. M. Demiański and A. Doroshkevich, Astron. Astrophys. 422, 423 (2004).

    Article  ADS  Google Scholar 

  68. M. Kendalll and P. Moran, Geometrical Probability (Griffin, London, 1963).

    Google Scholar 

  69. A. A. Sveshnikov, Applied Methods of the Theory of Random Functions, Vol. 89 of International Series of Monographs on Pure and Applied Mathematics (Nauka, Moscow, 1968; Elsevier, Amsterdam, 1966).

Download references

Funding

The work was carried out within the framework of the FIAN NNG program 41-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Larchenkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Seifina

Appendix

Appendix

STATISTICAL CHARACTERISTICS OF THE STRUCTURE OF THE UNIVERSE

As was shown in [33], in the linear theory of gravitational instability there is a “natural” length scale,

$$\begin{gathered} {{L}_{0}} = \frac{1}{{{{k}_{0}}}} = \frac{{{\text{Mpc}}}}{{{{\Omega }_{m}}{{h}^{2}}}} \simeq 7.29\;{\text{Mpc}}\frac{{0.14}}{{{{\Omega }_{m}}{\kern 1pt} {{h}^{2}}}}{\kern 1pt} , \\ {{M}_{L}} = \frac{\pi }{6}\langle {{\rho }_{m}}\rangle L_{0}^{3} \simeq 7.5 \times {{10}^{{12}}}{\kern 1pt} {{M}_{ \odot }}{\kern 1pt} . \\ \end{gathered} $$
(11)

Several characteristic scales appear in Zel’dovich’s theory, associated with the “natural” scale and the processes of formation of structural elements—“pancakes” and filaments. These scales are directly related to the moments of the perturbation spectrum

$${{Q}_{n}} = \int\limits_0^\infty \,{{k}^{n}}P(k{\text{/}}{{k}_{0}})dk{\kern 1pt} ,$$
(12)

where \(P(k)\) is the spectrum of perturbations, normalized by the usual condition

$$\sigma _{8}^{2} = \int\limits_0^\infty \,{{k}^{2}}P(k{\text{/}}{{k}_{0}}){{W}^{2}}(k{\kern 1pt} {{R}_{8}})dk \simeq 0.64,$$

and \(W(x)\),

$$W(x) = 3(\sin x - x\cos x){\text{/}}{{x}^{3}}{\kern 1pt} ,$$

is the filter corresponding to a spherical halo with radius \({{R}_{8}} = 8{\kern 1pt} {{h}^{{ - 1}}}\) Mpc.

As was shown in [4, 67], in cosmological models with “cold” DM, the evolution of the structure is determined by the displacement of DM particles from the unperturbed position and the characteristic length

$$\begin{gathered} {{l}_{0}} = \sqrt {{{Q}_{0}}} \simeq 13{\text{ Mpc}}, \\ {{M}_{0}} = {{M}_{L}}{{({{l}_{0}}{\text{/}}{{L}_{0}})}^{3}} \simeq 4 \times {{10}^{{13}}}{\kern 1pt} {{M}_{ \odot }}. \\ \end{gathered} $$
(13)

This scale appears in observations of galaxy clusters and in the parameters of the structure of the Universe at low redshifts [24].

At earlier stages of the evolution of the Universe, smaller scales appear. Thus, for the standard spectrum [33] limited by the region

$$\begin{gathered} 0 \leqslant k \leqslant {{k}_{{mn}}} = 170{\kern 1pt} {{k}_{0}} \simeq 23{\text{ Mp}}{{{\text{c}}}^{{ - 1}}}, \\ {{M}_{{mn}}} = {{M}_{0}}{{({{k}_{0}}{\text{/}}{{k}_{{mn}}})}^{3}} \simeq {{10}^{5}}{\kern 1pt} {{M}_{ \odot }}, \\ \end{gathered} $$
(14)
$$\begin{gathered} {{l}_{1}} = \sqrt {{{Q}_{0}}{\text{/}}{{Q}_{2}}} \simeq 2{\text{ Mpc}}, \\ {{M}_{1}} = 1.33{\kern 1pt} \pi \langle \rho \rangle l_{1}^{3} \simeq 1.3 \times {{10}^{{12}}}{\kern 1pt} {{M}_{ \odot }}. \\ \end{gathered} $$
(15)

These values are close to the observed group sizes (7). The same scales are visible in the mass distribution of observed galaxies and clusters of galaxies. Using the standard methods of the theory of random processes [4, 68, 69], one can roughly estimate the average linear density of “pancakes” along a random straight line as

$${{\sigma }_{1}} = \frac{{{{f}_{m}}}}{{2\pi {{l}_{1}}}}{\kern 1pt} ,$$
(16)

where \({{f}_{m}}\) is the fraction of the mass included in the observed objects. The observed mean free path between C IV absorption systems \(\langle {{d}_{{sys}}}\rangle \) (9) at fraction \(\langle {{f}_{m}}\rangle \sim 0.6 \times {{10}^{{ - 3}}}\) corresponds to the characteristic length \({{l}_{1}} \simeq \langle {{f}_{m}}{{d}_{{sys}}}\rangle {\text{/}}2\pi \simeq 0.6\) Mpc, which is close to the estimate of \({{l}_{1}}\) (15). In the model [65], such a spectrum corresponds to the mass of DM particles \({{M}_{{{\text{DM}}}}} \sim 2\) keV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiański, M., Doroshkevich, A. & Larchenkova, T. The Structure of the Universe in the Quasar Absorption Spectra. Astron. Rep. 67, 439–447 (2023). https://doi.org/10.1134/S1063772923050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923050025

Keywords:

Navigation