Skip to main content
Log in

A Study of the Axisymmetric Restricted Five-Body Problem within the Frame of Variable Mass: The Concave Case

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In the framework of axisymmetric problem of restricted five bodies with variable mass, our goal is to study the existence and stability of libration points. In the axisymmetric restricted five-body problem, we have assumed that the mass of the fifth particle varies according to Jeans’ law. We have further supposed that the four bodies having masses \({{m}_{1}},\;{{m}_{2}},\;{{m}_{3}}\) and \({{m}_{4}}\) (with \({{m}_{3}} = {{m}_{4}} = \tilde {m}\)) form an axisymmetric concave configuration. The equations of motion of a test particle of infinitesimal mass \(m\) have been illustrated, which is similar to the axisymmetric restricted five-body problem when the problem of variable mass evolves with the problem of constant mass. In this paper, we have determined in-plane as well as out-of-plane libration points along with their stability. Further, we have shown the regions of motion where the fifth body can move freely. We have also shown that the angle parameters \(\alpha \) and \(\beta \) and the parameters, arising due to variation of mass \(\gamma \;(0 < \gamma < 1)\) and \(\sigma \;(0 < \sigma < 2.5)\), affect the existence and number of these libration points. Moreover, the bivariate version of the Newton-Raphson iterative scheme is applied in an attempt to unveil the analysis of the basins of convergence linked with the libration points as a function of the mass parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. E. I. Abouelmagd and A. Mostafa, Astrophys. Space Sci. 357, 58 (2015).

    Article  ADS  Google Scholar 

  2. C. N. Douskos, Astrophys. Space Sci. 326, 263 (2010).

    Article  ADS  Google Scholar 

  3. S. M. Elshaboury, E. I. Abouelmagd, V. S. Kalantonis, and E. A. Perdios, Astrophys. Space Sci. 361, 315 (2016).

    Article  ADS  Google Scholar 

  4. B. Érdi and Z. Czirják, Celest. Mech. Dyn. Astron. 125, 33 (2016).

    Article  ADS  Google Scholar 

  5. C. Gao, J. Yuan, and C. Sun, Astrophys. Space Sci. 362, 72 (2017).

    Article  ADS  Google Scholar 

  6. J. H. Jeans, Astronomy and Cosmology (Cambridge, Cambridge Univ. Press, 1928).

    MATH  Google Scholar 

  7. L. G. Lukyanov, Astron. Lett. 35, 349 (2009).

    Article  ADS  Google Scholar 

  8. A. Mittal, R. Aggarwal, M. S. Suraj, and V. S. Bisht, Astrophys. Space Sci. 361, 329 (2016).

    Article  ADS  Google Scholar 

  9. A. Mittal, R. Aggarwal, M. S. Suraj, and M. Arora, Astrophys. Space Sci. 363, 109 (2018).

    Article  ADS  Google Scholar 

  10. I. V. Meshcherskii, Studies on the Mechanics of the Bodies of the Variable Mass (GITTL, Moscow, 1949) [in Russian].

  11. I. V. Meshcherskii, Work on the Mechanics of the Bodies of the Variable Mass (GITTL, Moscow, 1952) [in Russian].

    MATH  Google Scholar 

  12. A. Ollöngren, J. Symbol. Comput. 6, 117 (1988).

    Google Scholar 

  13. K. E. Papadakis and S. S. Kanavos, Astrophys. Space Sci. 310, 119 (2007).

    Article  ADS  Google Scholar 

  14. P. Sachan, M. S. Suraj, R. Aggarwal, C. Asique, and A. Mittal, New Astron. 92, 1384 (2022).

    Article  Google Scholar 

  15. J. Singh and B. Ishwar, Celest. Mech. 32, 297 (1984).

    Article  ADS  Google Scholar 

  16. J. Singh and B. Ishwar, Celest. Mech. 35, 201 (1985).

    Article  ADS  Google Scholar 

  17. J. Singh and O. Leke, Astrophys. Space Sci. 326, 305 (2010).

    Article  ADS  Google Scholar 

  18. A. K. Srivastava and B. Ishwar, Celest. Mech. 30, 323 (1983).

    Article  ADS  Google Scholar 

  19. M. S. Suraj, A. Mittal, M. Arora, et al., Int. J. Non-Lin. Mech. 102, 62 (2018).

    Google Scholar 

  20. M. S. Suraj, E. E. Zotos, C. Kaur, R. Aggarwal, et al., Int. J. Non-Lin. Mech. 103, 113 (2018).

    Google Scholar 

  21. M. S. Suraj, E. I. Abouelmagd, R. Aggarwal, and A. Mittal, New Astron. 70, 12 (2019).

    Article  ADS  Google Scholar 

  22. M. S. Suraj, P. Sachan, R. Aggarwal, and A. Mittal, Int. J. Non-Lin. Mech. 109, 80 (2019).

    Google Scholar 

  23. M. S. Suraj, P. Sachan, E. E. Zotos, A. Mittal, and R. Aggarwal, Int. J. Non-Lin. Mech. 112, 25 (2019).

    Google Scholar 

  24. M. S. Suraj, P. Sachan, R. Aggarwal, and A. Mittal, Astrophys. Space Sci. 364, 44 (2019).

    Article  Google Scholar 

  25. M. S. Suraj, R. Aggarwal, M. D. Asique, A. Mittal, and P. Sachan, Astrophys. Space Sci. 364, 87 (2019).

    Article  ADS  Google Scholar 

  26. S. Wolfram, The Mathematica Book, 5th ed. (Wolfram Media, Champaign, 2003).

    Google Scholar 

  27. E. E. Zotos, Astrophys. Space Sci. 361, 181 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. M.-J. Zhang, Ch.-Y. Zhao, and Y.-Q. Xiong, Astrophys. Space Sci. 337, 107 (2011).

    Article  ADS  Google Scholar 

  29. E. E. Zotos, Astrophys. Space Sci. 362, 195 (2017).

    Article  ADS  Google Scholar 

  30. E. E. Zotos, Astrophys. Space Sci. 362, 190 (2017).

    Article  ADS  Google Scholar 

  31. E. E. Zotos and M. S. Suraj, Astrophys. Space Sci. 363, 20 (2018).

    Article  ADS  Google Scholar 

  32. E. E. Zotos, Int. J. Non-Lin. Mech. 103, 93 (2018).

    Google Scholar 

  33. E. E. Zotos, M. S. Suraj, R. Aggarwal, and S. K. Satya, Few-Body Syst. 59, 69 (2018).

    Article  ADS  Google Scholar 

  34. E. E. Zotos, S. K. Satya, M. S. Suraj, and R. Aggarwal, Int. J. Bifurc. Chaos 28, 1830016 (2018).

Download references

ACKNOWLEDGMENTS

The authors would like to express their warmest thanks to the anonymous referee for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Sachan.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

First order partial derivatives are:

$${{U}_{\xi }} = \left( {1 + \frac{{{{\sigma }^{2}}}}{4}} \right)\xi - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \frac{{{{m}_{i}}{{{\tilde {\xi }}}_{i}}}}{{\rho _{i}^{3}}},$$
(A.1a)
$${{U}_{\eta }} = \left( {1 + \frac{{{{\sigma }^{2}}}}{4}} \right)\eta - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \frac{{{{m}_{i}}{{{\tilde {\eta }}}_{i}}}}{{\rho _{i}^{3}}},$$
(A.1b)
$${{U}_{\zeta }} = \frac{{{{\sigma }^{2}}\zeta }}{4} - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \frac{{{{m}_{i}}\tilde {\zeta }}}{{\rho _{i}^{3}}},$$
(A.1c)

the second-order partial derivatives of the effective potential function \(U(\xi ,\eta ,\zeta )\), which are used to illustrate the stability along with BoCs associated with the LPs, are:

$${{U}_{{\xi \xi }}} = \left( {1 + \frac{{{{\sigma }^{2}}}}{4}} \right) - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{{{m}_{i}}}}{{\rho _{i}^{3}}} - \frac{{3{{m}_{i}}\tilde {\xi }_{i}^{2}}}{{\rho _{i}^{5}}}} \right),$$
(A.1d)
$${{U}_{{\eta \eta }}} = \left( {1 + \frac{{{{\sigma }^{2}}}}{4}} \right) - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{{{m}_{i}}}}{{\rho _{i}^{3}}} - \frac{{3{{m}_{i}}\tilde {\eta }_{i}^{2}}}{{\rho _{i}^{5}}}} \right),$$
(A.1e)
$${{U}_{{\zeta \zeta }}} = \frac{{{{\sigma }^{2}}}}{4} - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{{{m}_{i}}}}{{\rho _{i}^{3}}} - \frac{{3{{m}_{i}}\tilde {\zeta }_{i}^{2}}}{{\rho _{i}^{5}}}} \right),$$
(A.1f)
$${{U}_{{\xi \eta }}} = \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{3{{m}_{i}}{{{\tilde {\xi }}}_{i}}{{{\tilde {\eta }}}_{i}}}}{{\rho _{i}^{5}}}} \right) = {{\Omega }_{{\eta \xi }}},$$
(A.1g)
$${{U}_{{\eta \zeta }}} = \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{3{{m}_{i}}{{{\tilde {\eta }}}_{i}}{{{\tilde {\zeta }}}_{i}}}}{{\rho _{i}^{5}}}} \right) = {{\Omega }_{{\zeta \eta }}},$$
(A.1h)
$${{U}_{{\zeta \xi }}} = \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{3{{m}_{i}}{{{\tilde {\zeta }}}_{i}}{{{\tilde {\xi }}}_{i}}}}{{\rho _{i}^{5}}}} \right) = {{\Omega }_{{\xi \zeta }}}.$$
(A.1i)
$${{\Xi }_{{11}}} = - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{{{m}_{i}}}}{{\rho _{{0i}}^{3}}} - \frac{{3{{m}_{i}}\tilde {\xi }_{{0i}}^{2}}}{{\rho _{{0i}}^{5}}}} \right) + \left( {1 + \frac{{{{\sigma }^{2}}}}{4}} \right),$$
(A.2)
$${{\Xi }_{{22}}} = - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{{{m}_{i}}}}{{\rho _{{0i}}^{3}}} - \frac{{3{{m}_{i}}\tilde {\eta }_{{0i}}^{2}}}{{\rho _{{0i}}^{5}}}} \right) + \left( {1 + \frac{{{{\sigma }^{2}}}}{4}} \right),$$
(A.3)
$${{\Xi }_{{12}}} = \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \frac{{3{{m}_{i}}{{{\tilde {\xi }}}_{{0i}}}{{{\tilde {\eta }}}_{{0i}}}}}{{\rho _{{0i}}^{5}}} = {{\Xi }_{{21}}},$$
(A.4)
$${{\Xi }_{{13}}} = \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{3{{m}_{i}}{{{\tilde {\zeta }}}_{{0i}}}{{{\tilde {\xi }}}_{{0i}}}}}{{\rho _{{0i}}^{5}}}} \right) = {{\Xi }_{{31}}},$$
(A.5)
$${{\Xi }_{{23}}} = \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{3{{m}_{i}}{{{\tilde {\eta }}}_{{0i}}}{{{\tilde {\zeta }}}_{{0i}}}}}{{\rho _{{0i}}^{5}}}} \right) = {{\Xi }_{{32}}},$$
(A.6)
$${{\Xi }_{{33}}} = - \frac{{{{\gamma }^{{3/2}}}}}{\Delta }\sum\limits_{i = 1}^4 \left( {\frac{{{{m}_{i}}}}{{\rho _{{0i}}^{3}}} - \frac{{3{{m}_{i}}\tilde {\zeta }_{{0i}}^{2}}}{{\rho _{{0i}}^{5}}}} \right) + \frac{{{{\sigma }^{2}}}}{4},$$
(A.7)

where

$$\rho _{{0i}}^{2} = \tilde {\xi }_{{0i}}^{2} + \tilde {\eta }_{{0i}}^{2} + \tilde {\zeta }_{{0i}}^{2},$$
$${{\tilde {\xi }}_{{0i}}} = ({{\xi }_{0}} - {{\xi }_{i}}),$$
$${{\tilde {\eta }}_{{0i}}} = ({{\eta }_{0}} - {{\eta }_{i}}),$$
$${{\tilde {\zeta }}_{{0i}}} = ({{\zeta }_{0}} - {{\zeta }_{i}}).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, P., Suraj, M.S., Aggarwal, R. et al. A Study of the Axisymmetric Restricted Five-Body Problem within the Frame of Variable Mass: The Concave Case. Astron. Rep. 67, 404–423 (2023). https://doi.org/10.1134/S1063772923040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923040030

Keywords:

Navigation