Skip to main content
Log in

Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The basins of convergence, associated with the roots (attractors) of a complex equation, are revealed in the Hill problem with oblateness and radiation, using a large variety of numerical methods. Three cases are investigated, regarding the values of the oblateness and radiation. In all cases, a systematic and thorough scan of the complex plane is performed in order to determine the basins of attraction of the several iterative schemes. The correlations between the attracting domains and the corresponding required number of iterations are also illustrated and discussed. Our numerical analysis strongly suggests that the basins of convergence, with the highly fractal basin boundaries, produce extraordinary and beautiful formations on the complex plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that the initial condition \((0,0)\) is the only singular point on the complex plane.

  2. When it is stated that a region is fractal we simply mean that it has a fractal-like geometry, without conducting any additional calculations for computing the fractal dimension as in Aguirre et al. (2001).

References

  • AbdulRaheem, A., Singh, J.: Combined effects of perturbations, radiation, and oblateness on the stability of equilibrium points in the restricted three-body problem. Astron. J. 131, 1880–1885 (2006)

    Article  ADS  Google Scholar 

  • Abouelmagd, E.: Existence and stability of triangular points in the restricted three-body problem with numerical applications. Astrophys. Space Sci. 342, 45–53 (2012)

    Article  ADS  Google Scholar 

  • Aguirre, J., Vallego, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, 066208 (2001)

    Article  ADS  Google Scholar 

  • Asique, M.C., Prasad, U., Hassan, M.R., Suraj, M.S.: On the photogravitational R4BP when the third primary is a triaxial rigid body. Astrophys. Space Sci. 361, 379 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chun, C., Ham, Y.: Some second-derivative-free variants of super-Halley method with fourth-order convergence. Appl. Math. Comput. 195, 537–541 (2008)

    MathSciNet  MATH  Google Scholar 

  • Chun, N., Neta, B.: A new sixth-order scheme for nonlinear equations. Appl. Math. Lett. 25, 185–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Conte, S.D., de Boor, C.: Elementary Numerical Analysis: An Algorithmic Approach. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  • Croustalloudi, M.N., Kalvouridis, T.J.: Attracting domains in ring-type N-body formations. Planet. Space Sci. 55, 53–69 (2007)

    Article  ADS  Google Scholar 

  • Croustalloudi, M.N., Kalvouridis, T.J.: The restricted \(2+2\) body problem: parametric variation of the equilibrium states of the minor bodies and their attracting regions. Int. Sch. Res. Not. Astron. Astrophys. 2013, 281849 (2013)

    Google Scholar 

  • Douskos, C.N.: Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction. Astrophys. Space Sci. 326, 263–271 (2010)

    Article  ADS  MATH  Google Scholar 

  • Douskos, C.N., Kalantonis, V., Markellos, P., Perdios, E.: On Sitnikov-like motions generating new kinds of 3D periodic orbits in the R3BP with prolate primaries. Astrophys. Space Sci. 337, 99–106 (2012)

    Article  ADS  MATH  Google Scholar 

  • Gousidou-Koutita, M., Kalvouridis, T.J.: On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of \((N + 1)\) bodies. Appl. Math. Comput. 212, 100–112 (2009)

    MathSciNet  MATH  Google Scholar 

  • Gutiérrez, J.M., Hernández, M.A.: An acceleration of Newton’s method: super-Halley method. Appl. Math. Comput. 117, 223–239 (2001)

    MathSciNet  MATH  Google Scholar 

  • Halley, E.: A new, exact and easy method of finding the roots of equations generally and that without any previous reduction. Philos. Trans. R. Soc. Lond. 18, 136–148 (1964)

    Article  Google Scholar 

  • Jarratt, P.: Multipoint iterative methods for solving certain equations. Comput. J. 8, 398–400 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: On some new aspects of the photo-gravitational Copenhagen problem. Astrophys. Space Sci. 317, 107–117 (2008)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J., Gousidou-Koutita, M.C.: Basins of attraction in the Copenhagen problem where the primaries are magnetic dipoles. Appl. Math. 3, 541–548 (2012)

    Article  Google Scholar 

  • King, R.F.: A family of fourth-order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kumari, R., Kushvah, B.S.: Stability regions of equilibrium points in restricted four-body problem with oblateness effects. Astrophys. Space Sci. 349, 693–704 (2014)

    Article  ADS  Google Scholar 

  • Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iterations. J. Assoc. Comput. Mach. 21, 643–651 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Maheshwar, A.K.: A fourth order iterative method for solving nonlinear equations. Appl. Math. Comput. 211, 383–391 (2009)

    MathSciNet  Google Scholar 

  • Markakis, M.P., Perdiou, A.E., Douskos, C.N.: The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families. Astrophys. Space Sci. 315, 297–306 (2008)

    Article  ADS  Google Scholar 

  • Markellos, V.V., Roy, A.E., Velgakis, M.J., Kanavos, S.S.: A photogravitational Hill problem and radiation effects on Hill stability of orbits. Astrophys. Space Sci. 271, 293–301 (2000)

    Article  ADS  MATH  Google Scholar 

  • Markellos, V.V., Roy, A.E., Perdios, E.A., Douskos, C.N.: A Hill problem with oblate primaries and effect of oblateness on Hill stability of orbits. Astrophys. Space Sci. 278, 295–304 (2001)

    Article  ADS  MATH  Google Scholar 

  • Murakami, T.: Some fifth order multipoint iterative formulae for solving equations. J. Inf. Process. 1, 138–139 (1978)

    MATH  Google Scholar 

  • Neta, B.: A sixth order family of methods for nonlinear equations. Int. J. Comput. Math. 7, 157–161 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Neta, B.: On a family of multipoint methods for nonlinear equations. Int. J. Comput. Math. 9, 353–361 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Neta, B., Johnson, A.N.: High order nonlinear solver. J. Comput. Methods Sci. Eng. 8, 245–250 (2008)

    MathSciNet  MATH  Google Scholar 

  • Neta, B., Petković, M.S.: Construction of optimal order nonlinear solvers using inverse interpolation. Appl. Math. Comput. 217, 2448–2455 (2010)

    MathSciNet  MATH  Google Scholar 

  • Oberti, P., Vienne, A.: An upgraded theory for Helene, Telesto, and Calypso. Astron. Astrophys. 397, 353–359 (2003)

    Article  ADS  Google Scholar 

  • Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Schuerman, D.W.: Roche potentials including radiation effects. Astrophys. Space Sci. 19, 351–358 (1972)

    Article  ADS  Google Scholar 

  • Schuerman, D.W.: The restricted three-body problem including radiation pressure. Astrophys. J. 238, 337–342 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Sharma, R.K., Subba Rao, P.V.: Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids. Celest. Mech. 12, 189–201 (1975)

    Article  ADS  MATH  Google Scholar 

  • Sharma, R.K., Subba Rao, P.V.: Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid. Celest. Mech. 13, 137–149 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145–187 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  • Traub, J.F.: Iterative Methods for Solution of Equations. Prentice Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  • Wolfram, S.: The Mathematica Book. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

  • Zotos, E.E.: Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure. Astrophys. Space Sci. 361, 181 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Zotos, E.E.: Revealing the basins of convergence in the planar equilateral restricted four-body problem. Astrophys. Space Sci. 362, 2 (2017a)

    Article  ADS  MathSciNet  Google Scholar 

  • Zotos, E.E.: Determining the Newton-Raphson basins of attraction in the electromagnetic Copenhagen problem. Int. J. Non-Linear Mech. 90, 111–123 (2017b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to express his warmest thanks to the anonymous referee for the careful reading of the original manuscript and for all the apt suggestions and comments which allowed us to improve both the quality as well as the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Appendix: Presentation of the iterative schemes

Appendix: Presentation of the iterative schemes

The sixteen iterative formulae, with order of convergence varying from 2 to 16, are the following:

  • Newton-Raphson’s method \((p = 2)\): Newton-Raphson’s optimal method (see e.g., Conte and de Boor 1973) is of second order, for simple roots, and the corresponding iterative scheme is given by

    $$ x_{n+1} = x_{n} - u_{n}, $$
    (14)

    where always \(u_{n} = f_{n}/f'_{n}\) with \(f_{n} = f(x_{n})\) and similarly for the derivatives \(f'_{n} = f'(x_{n})\), \(f''_{n} = f''(x _{n})\).

  • Halley’s method \((p = 3)\): Halley’s method (Halley 1964) is of third order and the corresponding iterative scheme is given by

    $$ x_{n+1} = x_{n} - \frac{u_{n}}{1 - L_{f} u_{n}}, $$
    (15)

    where \(L_{f} = f''_{n}/(2f'_{n})\).

  • Chebyshev’s method \((p = 3)\): Chebyshev’s method (Traub 1964) is of third order and the corresponding iterative scheme is given by

    $$ x_{n+1} = x_{n} - \biggl( 1 + \frac{L_{f}}{2} \biggr) u_{n}, $$
    (16)

    where \(L_{f} = f_{n} f''_{n}/(f'_{n})^{2}\).

  • Super Halley’s method \((p = 4)\): Super Halley’s method (Gutiérrez and Hernández 2001) is of fourth order and the corresponding iterative scheme is given by

    $$ x_{n+1} = x_{n} - \biggl( 1 + \frac{L_{f}}{2 ( 1 - L_{f} ) } \biggr) u _{n}, $$
    (17)

    where \(L_{f} = f_{n} f''_{n}/(f'_{n})^{2}\)

  • Modified super Halley’s method \((p = 4)\): Modified super Halley’s optimal method (Chun and Ham 2008) is of fourth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - \frac{2}{3}u_{n}, \\ &x_{n+1} = x_{n} - \biggl( 1 + \frac{L_{f}}{2 ( 1 - L_{f} ) } \biggr) u _{n}, \end{aligned} \end{aligned}$$
    (18)

    where \(L_{f} = \frac{f_{n}}{(f'_{n})^{2}} \frac{f'(y_{n}) - f'_{n}}{y _{n} - x_{n}}\).

  • King’s method \((p = 4)\): King’s method (King 1973) is of fourth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &x_{n+1} = x_{n} - \frac{ ( f_{n} ) ^{2} + ( \beta - 1 ) f _{n} f(y_{n}) + \beta ( f(y_{n}) ) ^{2}}{f'_{n} ( f_{n} + ( \beta - 2 ) f(y_{n}) ) }, \end{aligned} \end{aligned}$$
    (19)

    where in our experiments we have used \(\beta = - 1/2\).

  • Jarratt’s method \((p = 4)\): Jarratt’s method (Jarratt 1966) is of fourth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - \frac{2}{3}u_{n}, \\ &x_{n+1} = x_{n} - \frac{u_{n}}{2} - \frac{u_{n}}{2 ( 1 + \frac{3}{2} ( L_{f} - 1 ) ) }, \end{aligned} \end{aligned}$$
    (20)

    where \(L_{f} = f'(y_{n})/f'_{n}\).

  • Kung-Traub’s method \((p = 4)\): Kung-Traub’s optimal method (Kung and Traub 1974) is of fourth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &x_{n+1} = y_{n} - \frac{f(y_{n})}{f'_{n} ( 1 - L_{f} ) ^{2}}, \end{aligned} \end{aligned}$$
    (21)

    where \(L_{f} = f(y_{n})/f_{n}\).

  • Maheshwari’s method \((p = 4)\): Maheshwari’s optimal method (Maheshwar 2009) is of fourth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &x_{n+1} = x_{n} + \frac{1}{f'_{n}} \biggl( \frac{f_{n}^{2}}{f(y_{n}) - f_{n}} - \frac{(f(y_{n}))^{2}}{f_{n}} \biggr) . \end{aligned} \end{aligned}$$
    (22)
  • Murakami’s method \((p = 5)\): Murakami’s method (Murakami 1978) is of fifth order and the corresponding iterative scheme is given by

    $$ x_{n+1} = x_{n} - a_{1} u_{n} - a_{2} w_{2}(x_{n}) - a_{3} w_{3}(x _{n}) - \psi (x_{n}), $$
    (23)

    where

    $$\begin{aligned}& \begin{aligned} &w_{2}(x_{n}) = \frac{f_{n}}{f'(x_{n} - u_{n})}, \\ &w_{3}(x_{n}) = \frac{f_{n}}{f'(x_{n} + \beta u_{n} + \gamma w_{2}(x _{n}))}, \\ &\psi (x_{n}) = \frac{f_{n}}{b_{1} f'_{n} + b_{2} f'(x_{n} - u_{n})}. \end{aligned} \end{aligned}$$
    (24)

    In our experiments we have used the values: \(a_{1} = 0.3\), \(a_{2} = -0.5\), \(a_{3} = 2/3\), \(\beta = -1/2\), \(b_{1} = -15/32\), \(b_{2} = 75/32\), and \(\gamma = 0\).

  • Neta’s method \((p = 6)\): Neta’s method (Neta 1979) is of sixth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &z_{n} = y_{n} - \frac{f(y_{n})}{f'_{n}} \frac{f_{n} + \beta f(y_{n})}{f _{n} + ( \beta - 2 ) f(y_{n})}, \\ &x_{n+1} = z_{n} - \frac{f(z_{n})}{f'_{n}} \frac{f_{n} - f(y_{n})}{f _{n} - 3f(y_{n})}. \end{aligned} \end{aligned}$$
    (25)

    In Chun and Neta (2012) it was proved that \(\beta = -1/2\) is the best choice.

  • Chun-Neta’s method \((p = 6)\): Chun-Neta’s method (Chun and Neta 2012) is of sixth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &z_{n} = y_{n} - \frac{f(y_{n})}{f'_{n} ( 1 - f(y_{n})/f_{n} ) ^{2}}, \\ &x_{n+1} = z_{n} - \frac{f(z_{n})}{f'_{n} ( 1 - f(y_{n})/f_{n} - f(z _{n})/f_{n} ) ^{2}}. \end{aligned} \end{aligned}$$
    (26)
  • Neta-Johnson’s method \((p = 8)\): Neta-Johnson’s method (Neta and Johnson 2008) is of eighth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &h_{n} = x_{n} - \frac{1}{8}u_{n} - \frac{3f_{n}}{8f'(y_{n})}, \\ &z_{n} = x_{n} - \frac{f_{n}}{f'_{n}/6 + f'(y_{n})/6 + 2f'(h_{n})/3}, \\ &x_{n+1} = z_{n} - \frac{f(z_{n})}{f'_{n}} \\ &\phantom{x_{n+1} =\,\,}{}\times \frac{f'_{n} + f'(y_{n}) + a_{2}f'(h_{n})}{(-1 - a_{2})f'_{n} + (3 + a_{2})f'(y_{n}) + a_{2} f'(h _{n})}, \end{aligned} \end{aligned}$$
    (27)

    where in our experiments we have used \(a_{2} = -1\).

  • Neta-Petkovic’s method \((p = 8)\): Neta-Petkovic’s optimal method (Neta and Petković 2010) is of eighth order and the corresponding iterative scheme is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &z_{n} = x_{n} - \frac{f(y_{n})}{f'_{n} ( 1 - f(y_{n})/f_{n} ) ^{2}}, \\ &x_{n+1} = x_{n} - u_{n} + c_{n} f_{n}^{2} - d_{n} f_{n}^{3}, \end{aligned} \end{aligned}$$
    (28)

    where

    $$\begin{aligned}& \begin{aligned} &d_{n} = \frac{1}{(f(y_{n}) - f_{n})(f(y_{n}) - f(z_{n}))} \\ &\phantom{d_{n} =\,\,}{}\times\biggl( \frac{y _{n} - x_{n}}{f(y_{n}) - f_{n}} - \frac{1}{f'_{n}} \biggr) \\ &\phantom{d_{n} =\,\,}{}- \frac{1}{(f(y_{n}) - f(z_{n}))(f(z_{n}) - f_{n})} \\ &\phantom{d_{n} =\,\,}{}\times \biggl( \frac{z _{n} - x_{n}}{f(z_{n}) - f_{n}} - \frac{1}{f'_{n}} \biggr) , \\ &c_{n} = \frac{1}{f(y_{n}) - f_{n}} \biggl( \frac{y_{n} - x_{n}}{f(y _{n}) - f_{n}} - \frac{1}{f'_{n}} \biggr) \\ &\phantom{c_{n} =\,\,}{} - d_{n} \bigl(f(y_{n}) - f_{n}\bigr). \end{aligned} \end{aligned}$$
    (29)
  • Neta 14th order method \((p = 14)\): The iterative scheme of Neta’s 14th order method (Neta 1981) is given by

    $$\begin{aligned}& \begin{aligned} &w_{n} = x_{n} - u_{n}, \\ &z_{n} = w_{n} - \frac{f(w_{n})}{f'_{n}} \frac{f_{n} + b f(w_{n})}{f _{n} + (b - 2)f(w_{n})}, \\ &t_{n} = z_{n} - \frac{f(z_{n})}{f'_{n}} \frac{f_{n} - f(w_{n})}{f _{n} - 3f(w_{n})}, \\ &x_{n+1} = x_{n} - u_{n} + c f_{n}^{2} - d f_{n}^{3} + e f_{n}^{4}, \end{aligned} \end{aligned}$$
    (30)

    where

    $$\begin{aligned}& \begin{aligned} &e = \frac{\frac{\phi_{t} - \phi_{z}}{F_{t} - F_{z}} - \frac{\phi_{w} - \phi_{z}}{F_{w} - F_{z}}}{F_{t} - F_{w}}, \\ &d = \frac{\phi_{t} - \phi_{z}}{F_{t} - F_{z}} - e ( F_{t} + F _{z} ) , \\ &c = \phi_{t} - d F_{t} - e F_{t}^{2}, \end{aligned} \end{aligned}$$
    (31)

    where we use the notations

    $$\begin{aligned}& \begin{aligned} &\delta = \delta_{n} - x_{n}, \\ &F_{\delta } = f(\delta_{n}) - f_{n}, \\ &\phi_{\delta } = \frac{\delta }{F_{\delta }^{2}} - \frac{1}{F_{ \delta }f'_{n}}, \end{aligned} \end{aligned}$$
    (32)

    for \(\delta = w, z, t\). In our computations we have used the value \(b = 2\).

  • Neta 16th order method \((p = 16)\): The iterative scheme of Neta’s 16th order optimal method (Neta 1981) is given by

    $$\begin{aligned}& \begin{aligned} &y_{n} = x_{n} - u_{n}, \\ &z_{n} = y_{n} - \frac{f(y_{n})}{f'_{n}} \frac{f_{n} + \beta f(y_{n})}{f _{n} + (\beta - 2)f(y_{n})}, \\ &t_{n} = x_{n} - u_{n} + c_{n} f_{n}^{2} - d_{n} f_{n}^{3}, \\ &x_{n+1} = x_{n} - u_{n} + c f_{n}^{2} - d f_{n}^{3} + e f_{n}^{4}, \end{aligned} \end{aligned}$$
    (33)

    where \(c_{n}\) and \(d_{n}\) are given by Eqs. (29), while \(c\), \(d\), and \(e\) are given by Eqs. (31). In our computations we have used the value \(\beta = 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotos, E.E. Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation. Astrophys Space Sci 362, 190 (2017). https://doi.org/10.1007/s10509-017-3169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3169-x

Keywords

Navigation