Skip to main content
Log in

Effect of Finite Straight Segment on the Non-linear Stability of the Equilibrium Point in the Planar Robe’s Problem

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In non-linear stability analysis, the effects of non-linear terms in the equations of motion are considered. The presence of these non-linear terms can cause the results of linear stability to change dramatically. Therefore, the Arnold–Moser theorem (Kolmogorov–Arnold–Moser theory) has been used to study the non-linear stability of the equilibrium point \(( - \mu ,0)\) in the planar Robe’s restricted three-body problem when the second primary is a finite straight segment of length \(2l\). The density parameter \(k\) is considered zero. The equilibrium point has been found to be stable in non-linear sense for all mass ratios \(\mu \) in the range of linear stability \(\left( {8(1 - {{l}^{2}}){\text{/}}9,\;1 - {{l}^{2}}} \right)\) except possibly for six critical values of the mass ratio \(\mu \). The critical values depend on the length parameter \(l\), which shows that the length parameter \(l\) has significant effect on the non-linear stability of the equilibrium point. The obtained results are applied to predict the stability of equilibrium point \(( - \mu ,0)\) for Jupiter–Amalthea system. It is observed that the equilibrium point is unstable for Jupiter‒Amalthea system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. https://en.wikipedia.org/wiki/Jupiter

REFERENCES

  1. L. Euler, Theoria Motuum Lumae (Typis Acad. Imper. Sci., Petropoli, 1772).

  2. C. G. J. Jacobi, C. R. Chem. 3, 59 (1836).

  3. Oeuvres de Lagrange, 14, Ed. by J. A. Serret (Gauthier-Villars, Paris, 1772).

    Google Scholar 

  4. V. Szebehely, Theory of Orbits, the Restricted Problem of Three Bodies (Academic, New York, 1967).

    MATH  Google Scholar 

  5. E. I. Abouelmagd, V. S. Kalantonis, and A. E. Perdiou, Adv. Astron. 2021, 9963761 (2021).

  6. A. A. Ansari, S. Alhowaity, E. I. Abouelmagd, and S. K. Sahdev, Mathematics 10, 2186 (2022).

    Article  Google Scholar 

  7. E. I. Abouelmagd, S. Alhowaity, Z. Diab, J. L. Guirao, and M. H. Shehata, Mathematics 10, 614 (2022).

    Article  Google Scholar 

  8. E. I. Abouelmagd, J. L. G. Guirao, and A. K. Pal, New Astron. 75, 101319 (2020).

  9. A. Deprit and A. Deprit-Bartholme, Astron. J. 72, 173 (1967).

    Article  ADS  Google Scholar 

  10. P. V. Subbarao and R. K. Sharma, Celest. Mech. Dyn. Astron. 65, 291 (1997).

    ADS  Google Scholar 

  11. P. P. Hallan, S. Jain, and K. B. Bhatnagar, Celest. Mech. Dyn. Astron. 77, 157 (2000).

    Article  ADS  Google Scholar 

  12. P. P. Hallan, S. Jain, and K. B. Bhatnagar, Indian J. Pure Appl. Math. 32, 413 (2001).

    MathSciNet  Google Scholar 

  13. R. Kishor and B. S. Kushvah, Astrophys. Space Sci. 362, 156 (2017).

    Article  ADS  Google Scholar 

  14. R. Kishor, M. X. J. Raj, and B. Ishwar, Qualit. Theory Dyn. Syst. 18, 1055 (2019); arXiv: 1906.04482 [nlin.CD].

  15. F. Gabern, Á. Jorba, and U. Locatelli, Nonlinearity 18, 1705 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. E. Littlewood, Proc. London Math. Soc. 9, 343 (1959).

    Article  MathSciNet  Google Scholar 

  17. J. E. Littlewood, Proc. London Math. Soc. 9, 525 (1959).

    Article  MathSciNet  Google Scholar 

  18. A. Giorgilli and C. Skokos, Astron. Astrophys. 317, 254 (1997).

    ADS  Google Scholar 

  19. C. Efthymiopoulos and Z. Sándor, Mon. Not. R. Astron. Soc. 364, 253 (2005).

    Article  ADS  Google Scholar 

  20. Ch. Lhotka, C. Efthymiopoulos, and R. Dvorak, Mon. Not. R. Astron. Soc. 384, 1165 (2008).

    Article  ADS  Google Scholar 

  21. H. A. G. Robe, Celest. Mech. Dyn. Astron. 16, 343 (1977).

    Article  Google Scholar 

  22. P. P. Hallan and N. Rana, Celest. Mech. Dyn. Astron. 79, 145 (2001).

    Article  ADS  Google Scholar 

  23. A. R. Plastino and A. Plastino, Celest. Mech. Dyn. Astron. 61, 197 (1995).

    Article  ADS  Google Scholar 

  24. S. Chandrashekhar, Ellipsoidal Figures of Equilibrium (Dover, New York, 1987).

    Google Scholar 

  25. B. Kaur and R. Aggarwal, Astrophys. Space Sci. 339, 283 (2012).

    Article  ADS  Google Scholar 

  26. B. Kaur and R. Aggarwal, Acta Astronaut. 89, 31 (2013).

    Article  ADS  Google Scholar 

  27. B. Kaur and R. Aggarwal, Astrophys. Space Sci. 349, 57 (2013).

    Article  ADS  Google Scholar 

  28. R. Aggarwal and B. Kaur, Astrophys. Space Sci. 352, 467 (2014).

    Article  ADS  Google Scholar 

  29. D. Kumar, B. Kaur, S. Chauhan, and V. Kumar, Int. J. Non-Lin. Mech. 109, 182 (2019).

    Google Scholar 

  30. A. A. Ansari, New Astron. 83, 101496 (2021).

  31. E. I. Abouelmagd, A. A. Ansari, and M. H. Shehata, Int. J. Geom. Methods Mod. Phys. 18, 2150005 (2021).

  32. V. A. Antonov and B. P. Kondratyev, Izv. Phys. Solid Earth 40, 323 (2004).

    Google Scholar 

  33. V. A. Antonov and B. P. Kondratyev, Izv. Phys. Solid Earth 42, 89 (2006).

    Article  ADS  Google Scholar 

  34. P. P. Hallan and K. B. Mangang, Indian J. Pure Appl. Math. 38, 17 (2007).

    MathSciNet  Google Scholar 

  35. P. P. Hallan and K. B. Mangang, Adv. Astron. 2008, 425412 (2008).

  36. D. Schmidt and L. Valeriano, Discrete Contin. Dyn. Syst. Ser B 21, 1917 (2016).

    Article  MathSciNet  Google Scholar 

  37. R. P. Jain and D. Sinha, Astrophys. Space Sci. 353, 73 (2014).

    Article  ADS  Google Scholar 

  38. K. R. Meyer and D. S. Schmidt, J. Differ. Equat. 62, 222 (1986).

    Article  ADS  Google Scholar 

  39. K. B. Bhatnagar and P. P. Hallan, Celest. Mech. 30, 97 (1983).

    Article  ADS  Google Scholar 

  40. V. I. Arnold, Sov. Math. Dokl. 2, 247 (1961).

    Google Scholar 

  41. B. Kaur and S. Kumar, Astrophys. Space Sci. 366, 43 (2021).

    Article  ADS  Google Scholar 

  42. A. M. Lyapunov, in Academician A.M. Lyapunov Collected Works (Acad. Sci. USSR, Moscow, 1956), Vol. 2, p. 5 [in Russian].

  43. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge Univ. Press, London, 2012), p. 427.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Center for Fundamental Research in Space dynamics and Celestial mechanics (CFRSC), New Delhi, India, for providing all the necessary facilities for this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhavneet Kaur, Sumit Kumar or Rajiv Aggarwal.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDICES

APPENDICES

APPENDIX A

$$\begin{gathered} {{a}_{i}} = 4h_{i}^{2}\mu {{\omega }_{i}}( - 38{{l}^{2}}\mu \omega _{i}^{2} + 16{{l}^{2}}\mu l_{i}^{2} + 32{{l}^{2}}\omega _{i}^{2} - 13{{l}^{2}}l_{i}^{2} \\ + \;3\mu l_{i}^{2} - 6\mu \omega _{i}^{2} - 3l_{i}^{2} + 6\omega _{i}^{2}),\quad (i = 1,2), \\ \end{gathered} $$
$$\begin{gathered} {{a}_{{3 + i}}} = 4h_{i}^{2}\mu {{\omega }_{i}}(38{{l}^{2}}\mu \omega _{i}^{2} + 16{{l}^{2}}\mu l_{i}^{2} - 104{{l}^{2}}\omega _{i}^{4} \\ - \;32{{l}^{2}}\omega _{i}^{2} - 40{{l}^{2}}l_{i}^{2}\omega _{i}^{2} + 104{{l}^{2}}{{l}_{i}}\omega _{i}^{2} - 13{{l}^{2}}l_{i}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;3\mu l_{i}^{2} - 12l_{i}^{2}\omega _{i}^{2} + 6\mu \omega _{i}^{2} + 24{{l}_{i}}\omega _{i}^{2} - 3l_{i}^{2} \\ - \;24\omega _{i}^{4} - 6\omega _{i}^{2}),\quad (i = 1,2), \\ \end{gathered} $$
$$\begin{gathered} {{a}_{7}} = 8{{h}_{1}}{{h}_{2}}\mu \sqrt {{{\omega }_{1}}} \sqrt {{{\omega }_{2}}} (38{{l}^{2}}\mu {{\omega }_{2}}{{\omega }_{1}} + 16{{l}^{2}}\mu {{l}_{1}}{{l}_{2}} \\ - \;26{{l}^{2}}{{\omega }_{2}}\omega _{1}^{3} + 52{{l}^{2}}\omega _{2}^{2}\omega _{1}^{2} + 26{{l}^{2}}{{l}_{2}}\omega _{1}^{2} - 10{{l}^{2}}{{l}_{1}}{{l}_{2}}\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} - \;26{{l}^{2}}\omega _{2}^{3}{{\omega }_{1}} - 32{{l}^{2}}{{\omega }_{2}}{{\omega }_{1}} + 26{{l}^{2}}{{l}_{1}}{{\omega }_{2}}{{\omega }_{1}} - 26{{l}^{2}}{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} \\ + \;20{{l}^{2}}{{l}_{1}}{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} - 26{{l}^{2}}{{l}_{1}}\omega _{2}^{2} - 10{{l}^{2}}{{l}_{1}}{{l}_{2}}\omega _{2}^{2} - 13{{l}^{2}}{{l}_{1}}{{l}_{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3\mu {{l}_{1}}{{l}_{2}} - 3{{l}_{1}}{{l}_{2}}\omega _{1}^{2} + 6{{l}_{2}}\omega _{1}^{2} + 6\mu {{\omega }_{2}}{{\omega }_{1}} + 6{{l}_{1}}{{\omega }_{2}}{{\omega }_{1}} \\ + \;6{{l}_{1}}{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} - 6{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} - 6{{l}_{1}}\omega _{2}^{2} - 3{{l}_{1}}{{l}_{2}}\omega _{2}^{2} - 3{{l}_{1}}{{l}_{2}} \\ - \;6{{\omega }_{2}}\omega _{1}^{3} + 12\omega _{2}^{2}\omega _{1}^{2} - 6\omega _{2}^{3}{{\omega }_{1}} - 6{{\omega }_{2}}{{\omega }_{1}}), \\ \end{gathered} $$
$$\begin{gathered} {{a}_{8}} = - 8{{h}_{1}}{{h}_{2}}\mu \sqrt {{{\omega }_{1}}} \sqrt {{{\omega }_{2}}} ( - 38{{l}^{2}}\mu {{\omega }_{2}}{{\omega }_{1}} + 16{{l}^{2}}\mu {{l}_{1}}{{l}_{2}} \\ + \;26{{l}^{2}}{{\omega }_{2}}\omega _{1}^{3} + 52{{l}^{2}}\omega _{2}^{2}\omega _{1}^{2} + 26{{l}^{2}}{{l}_{2}}\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} - \;10{{l}^{2}}{{l}_{1}}{{l}_{2}}\omega _{1}^{2} + 26{{l}^{2}}\omega _{2}^{3}{{\omega }_{1}} + 32{{l}^{2}}{{\omega }_{2}}{{\omega }_{1}} \\ - \;26{{l}^{2}}{{l}_{1}}{{\omega }_{2}}{{\omega }_{1}} + 26{{l}^{2}}{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} - 20{{l}^{2}}{{l}_{1}}{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} \\ \end{gathered} $$
$$\begin{gathered} - \;26{{l}^{2}}{{l}_{1}}\omega _{2}^{2} - 10{{l}^{2}}{{l}_{1}}{{l}_{2}}\omega _{2}^{2} - 13{{l}^{2}}{{l}_{1}}{{l}_{2}} + 3\mu {{l}_{1}}{{l}_{2}} \\ - \;3{{l}_{1}}{{l}_{2}}\omega _{1}^{2} + 6{{l}_{2}}\omega _{1}^{2} - 6\mu {{\omega }_{2}}{{\omega }_{1}} - 6{{l}_{1}}{{\omega }_{2}}{{\omega }_{1}} \\ \end{gathered} $$
$$\begin{gathered} - \;6{{l}_{1}}{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} + 6{{l}_{2}}{{\omega }_{2}}{{\omega }_{1}} - 6{{l}_{1}}\omega _{2}^{2} - 3{{l}_{1}}{{l}_{2}}\omega _{2}^{2} - 3{{l}_{1}}{{l}_{2}} \\ + \;6{{\omega }_{2}}\omega _{1}^{3} + 12\omega _{2}^{2}\omega _{1}^{2} + 6\omega _{2}^{3}{{\omega }_{1}} + 6{{\omega }_{2}}{{\omega }_{1}}), \\ \end{gathered} $$
$$\begin{gathered} {{b}_{1}} = - 4h_{1}^{2}\mu \omega _{1}^{2}(70\mu {{l}_{1}}{{l}^{2}} + 92{{l}_{1}}{{l}^{2}}\omega _{1}^{2} - 116{{l}^{2}}\omega _{1}^{2} - 46l_{1}^{2}{{l}^{2}} \\ + \;29{{l}_{1}}{{l}^{2}} + 12\mu {{l}_{1}} + 24{{l}_{1}}\omega _{1}^{2} - 12l_{1}^{2} + 6{{l}_{1}} - 24\omega _{1}^{2}), \\ \end{gathered} $$
$$\begin{gathered} {{b}_{2}} = - 4h_{2}^{2}\mu \omega _{2}^{2}(70\mu {{l}_{2}}{{l}^{2}} + 92{{l}_{2}}{{l}^{2}}\omega _{2}^{2} + 116{{l}^{2}}\omega _{2}^{2} + 46l_{2}^{2}{{l}^{2}} \\ + \;29{{l}_{2}}{{l}^{2}} + 12\mu {{l}_{2}} + 24{{l}_{2}}\omega _{2}^{2} + 12l_{2}^{2} + 6{{l}_{2}} + 24\omega _{2}^{2}), \\ \end{gathered} $$
$$\begin{gathered} {{b}_{4}} = 4{{h}_{1}}{{h}_{2}}\mu \sqrt {{{\omega }_{1}}} \sqrt {{{\omega }_{2}}} (70{{l}^{2}}\mu {{l}_{2}}{{\omega }_{1}} + 70{{l}^{2}}\mu {{l}_{1}}{{\omega }_{2}} \\ + \;23{{l}^{2}}{{l}_{2}}\omega _{1}^{3} - 116{{l}^{2}}{{\omega }_{2}}\omega _{1}^{2} + 23{{l}^{2}}{{l}_{1}}{{\omega }_{2}}\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} - \;46{{l}^{2}}{{l}_{2}}{{\omega }_{2}}\omega _{1}^{2} + 116{{l}^{2}}\omega _{2}^{2}{{\omega }_{1}} - 46{{l}^{2}}{{l}_{1}}\omega _{2}^{2}{{\omega }_{1}} \\ + \;23{{l}^{2}}{{l}_{2}}\omega _{2}^{2}{{\omega }_{1}} + 29{{l}^{2}}{{l}_{2}}{{\omega }_{1}} - 46{{l}^{2}}{{l}_{1}}{{l}_{2}}{{\omega }_{1}} \\ \end{gathered} $$
$$\begin{gathered} + \;23{{l}^{2}}{{l}_{1}}\omega _{2}^{3} + 29{{l}^{2}}{{l}_{1}}{{\omega }_{2}} + 46{{l}^{2}}{{l}_{1}}{{l}_{2}}{{\omega }_{2}} + 12\mu {{l}_{2}}{{\omega }_{1}} \\ + \;12\mu {{l}_{1}}{{\omega }_{2}} + 6{{l}_{2}}\omega _{1}^{3} + 6{{l}_{1}}{{\omega }_{2}}\omega _{1}^{2} - 12{{l}_{2}}{{\omega }_{2}}\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} - 12{{l}_{1}}\omega _{2}^{2}{{\omega }_{1}} + 6{{l}_{2}}\omega _{2}^{2}{{\omega }_{1}} - 12{{l}_{1}}{{l}_{2}}{{\omega }_{1}} + 6{{l}_{2}}{{\omega }_{1}} + 6{{l}_{1}}\omega _{2}^{3} \\ + \;6{{l}_{1}}{{\omega }_{2}} + 12{{l}_{1}}{{l}_{2}}{{\omega }_{2}} - 24{{\omega }_{2}}\omega _{1}^{2} + 24\omega _{2}^{2}{{\omega }_{1}}), \\ \end{gathered} $$
$$\begin{gathered} {{b}_{5}} = 4{{h}_{1}}{{h}_{2}}\mu \sqrt {{{\omega }_{1}}} \sqrt {{{\omega }_{2}}} (70{{l}^{2}}\mu {{l}_{2}}{{\omega }_{1}} - 70{{l}^{2}}\mu {{l}_{1}}{{\omega }_{2}} \\ + \;23{{l}^{2}}{{l}_{2}}\omega _{1}^{3} + 116{{l}^{2}}{{\omega }_{2}}\omega _{1}^{2} - 23{{l}^{2}}{{l}_{1}}{{\omega }_{2}}\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;46{{l}^{2}}{{l}_{2}}{{\omega }_{2}}\omega _{1}^{2} + 116{{l}^{2}}\omega _{2}^{2}{{\omega }_{1}} - 46{{l}^{2}}{{l}_{1}}\omega _{2}^{2}{{\omega }_{1}} \\ + \;23{{l}^{2}}{{l}_{2}}\omega _{2}^{2}{{\omega }_{1}} + 29{{l}^{2}}{{l}_{2}}{{\omega }_{1}} - 46{{l}^{2}}{{l}_{1}}{{l}_{2}}{{\omega }_{1}} \\ \end{gathered} $$
$$\begin{gathered} - \;23{{l}^{2}}{{l}_{1}}\omega _{2}^{3} - 29{{l}^{2}}{{l}_{1}}{{\omega }_{2}} - 46{{l}^{2}}{{l}_{1}}{{l}_{2}}{{\omega }_{2}} + 12\mu {{l}_{2}}{{\omega }_{1}} \\ - \;12\mu {{l}_{1}}{{\omega }_{2}} + 6{{l}_{2}}\omega _{1}^{3} - 6{{l}_{1}}{{\omega }_{2}}\omega _{1}^{2} + 12{{l}_{2}}{{\omega }_{2}}\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} - \;12{{l}_{1}}\omega _{2}^{2}{{\omega }_{1}} + 6{{l}_{2}}\omega _{2}^{2}{{\omega }_{1}} - 12{{l}_{1}}{{l}_{2}}{{\omega }_{1}} + 6{{l}_{2}}{{\omega }_{1}} - 6{{l}_{1}}\omega _{2}^{3} \\ - \;6{{l}_{1}}{{\omega }_{2}} - 12{{l}_{1}}{{l}_{2}}{{\omega }_{2}} + 24{{\omega }_{2}}\omega _{1}^{2} + 24\omega _{2}^{2}{{\omega }_{1}}). \\ \end{gathered} $$

APPENDIX B

$${{f}_{{2,0}}} = \frac{{ - 2h_{1}^{2}\mu }}{{\omega _{1}^{2}\omega _{2}^{2}(4\omega _{1}^{2} - \omega _{2}^{2})({{l}_{1}}(2\mu {{l}^{2}} + {{l}^{2}} + \mu - \omega _{1}^{2} + 1) - 2((3\mu - 2){{l}^{2}} + ({{l}^{2}} + 1)\omega _{1}^{2} + \mu - 1))}}$$
$$\begin{gathered} \times \;[4\omega _{1}^{4}(\omega _{1}^{2}(2(26{{l}^{2}} + 3)\mu \omega _{2}^{2} + 24\mu ((29 - 32\mu ){{l}^{2}} \\ - \;3\mu + 3) + 9(7{{l}^{2}} + 1)\omega _{2}^{4}) + 7\mu \omega _{2}^{2}((32\mu - 29){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3(\mu - 1)) - 36(7{{l}^{2}} + 1)\omega _{2}^{2}\omega _{1}^{4}) \\ + \;2l_{1}^{2}\omega _{1}^{2}(\omega _{2}^{2}(2(23{{l}^{2}} + 3)\mu \omega _{1}^{2} + {{l}^{2}}\mu (29\mu + 52) \\ \end{gathered} $$
$$\begin{gathered} + \;24(6{{l}^{2}} + 1)\omega _{1}^{4} + 3\mu (\mu + 2)) \\ + \;24\mu \omega _{1}^{2}((29\mu - 26){{l}^{2}} + 3(\mu - 1)) \\ \end{gathered} $$
$$\begin{gathered} - \;6(6{{l}^{2}} + 1)\omega _{1}^{2}\omega _{2}^{4}) + 2{{l}_{1}}\omega _{1}^{2}( - 6\omega _{1}^{2}\omega _{2}^{4}((7 - 8\mu ){{l}^{2}} \\ + \;(6{{l}^{2}} + 1)\omega _{1}^{2} - \mu + 1) + \omega _{2}^{2}(8\omega _{1}^{4}(3 - {{l}^{2}}(\mu - 21)) \\ \end{gathered} $$
$$\begin{gathered} + \;\mu \omega _{1}^{2}(13(8 - 29\mu ){{l}^{2}} - 39\mu + 12) \\ + \;\mu ((\mu (175\mu - 416) + 232){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3(\mu - 1)(5\mu - 8)) + 24(6{{l}^{2}} + 1)\omega _{1}^{6}) \\ + \;24\mu \omega _{1}^{2}(\omega _{1}^{2}((29\mu - 26){{l}^{2}} + 3(\mu - 1)) \\ \end{gathered} $$
$$\begin{gathered} - \;(\mu - 1)((35\mu - 29){{l}^{2}} + 3(\mu - 1)))) \\ + \;l_{1}^{3}(6\omega _{1}^{2}\omega _{2}^{4}((6 - 7\mu ){{l}^{2}} + (5{{l}^{2}} + 1)\omega _{1}^{2} - \mu + 1) \\ \end{gathered} $$
$$\begin{gathered} - \;\omega _{2}^{2}( - 4\omega _{1}^{4}((62\mu - 36){{l}^{2}} + 9\mu - 6) \\ + \;\mu \omega _{1}^{2}({{l}^{2}}(115 - 26\mu ) - 3(\mu - 5)) \\ \end{gathered} $$
$$\begin{gathered} + \;5(\mu - 1)\mu ((32\mu - 26){{l}^{2}} + 3(\mu - 1)) \\ + \;24(5{{l}^{2}} + 1)\omega _{1}^{6}) + 24\mu \omega _{1}^{2}(\omega _{1}^{2}((23 - 26\mu ){{l}^{2}} - 3\mu \\ + \;3) + (\mu - 1)((32\mu - 26){{l}^{2}} + 3(\mu - 1))))]. \\ \end{gathered} $$
$${{f}_{{0,2}}} = \frac{{ - 12\mu h_{2}^{2}}}{{\omega _{1}^{3}({{l}_{1}}(2\mu {{l}^{2}} + {{l}^{2}} - \omega _{1}^{2} + \mu + 1) - 2((3\mu - 2){{l}^{2}} + ({{l}^{2}} + 1)\omega _{1}^{2} + \mu - 1))}}$$
$$ \times \;\frac{1}{{(4\omega _{2}^{5} - 17\omega _{1}^{2}\omega _{2}^{3} + 4\omega _{1}^{4}{{\omega }_{2}})}}[2( - 24(7{{l}^{2}} + 1)\omega _{1}^{2}\omega _{2}^{8}$$
$$\begin{gathered} + \;2(51(7{{l}^{2}} + 1)\omega _{1}^{4} - ( - 4(6{{l}^{2}} + 1)l_{2}^{2} \\ + \;3(23{{l}^{2}} + 3)\mu {{l}_{2}} + 6(26{{l}^{2}} + 3)\mu )\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;3\mu ((29\mu - 26){{l}^{2}} + 3(\mu - 1)){{l}_{2}})\omega _{2}^{6} \\ - \;(24(7{{l}^{2}} + 1)\omega _{1}^{6} - 2( - 17(6{{l}^{2}} + 1)l_{2}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;9(23{{l}^{2}} + 3)\mu {{l}_{2}} + 4(26{{l}^{2}} + 3)\mu )\omega _{1}^{4} \\ + \;\mu (5(23{{l}^{2}} + 3)l_{2}^{2} + 6((87\mu + 52){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;9\mu + 6){{l}_{2}} - 42((32\mu - 29){{l}^{2}} + 3(\mu - 1)))\omega _{1}^{2} \\ + \;2\mu {{l}_{2}}((87 - 96\mu ){{l}^{2}} - 9\mu - 4((29\mu - 26){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3(\mu - 1)){{l}_{2}} + 9))\omega _{2}^{4} + \omega _{1}^{2}(2{{l}_{2}}(4(6{{l}^{2}} + 1){{l}_{2}} \\ - \;3(23{{l}^{2}} + 3)\mu )\omega _{1}^{4} + \mu (5(23{{l}^{2}} + 3)l_{2}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;2((87\mu + 52){{l}^{2}} + 9\mu + 6){{l}_{2}} - 8((32\mu - 29){{l}^{2}} \\ + \;3(\mu - 1)))\omega _{1}^{2} + 3\mu {{l}_{2}}((64\mu - 58){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;6(\mu - 1) + ((156 - 319\mu ){{l}^{2}} - 33\mu + 18){{l}_{2}}))\omega _{2}^{2} \\ + \;4\mu ((29\mu - 26){{l}^{2}} + 3(\mu - 1))l_{2}^{2}\omega _{1}^{4})\omega _{1}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;{{l}_{1}}(16\omega _{1}^{2}((7 - 8\mu ){{l}^{2}} + (6{{l}^{2}} + 1)\omega _{1}^{2} - \mu + 1)\omega _{2}^{8} \\ - \;2(34(6{{l}^{2}} + 1)\omega _{1}^{6} + ((238 - 249\mu ){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;4(5{{l}^{2}} + 1)l_{2}^{2} - 31\mu + 34)\omega _{1}^{4} + ( - 4((7\mu - 6){{l}^{2}} \hfill \\ + \;\mu - 1)l_{2}^{2} + 6(23{{l}^{2}} + 3)\mu {{l}_{2}} + \mu ((338 - 145\mu ){{l}^{2}} \hfill \\ \end{gathered} $$
$$\begin{gathered} - \;15\mu + 39))\omega _{1}^{2} + 4(\mu - 1)\mu ((35\mu - 29){{l}^{2}} \\ + \;3(\mu - 1)))\omega _{2}^{6} + 2(8(6{{l}^{2}} + 1)\omega _{1}^{8} \\ \end{gathered} $$
$$\begin{gathered} + \;((56 - 87\mu ){{l}^{2}} + 17(5{{l}^{2}} + 1)l_{2}^{2} - 11\mu + 8)\omega _{1}^{6} \\ + \;(((102 - 139\mu ){{l}^{2}} - 20\mu + 17)l_{2}^{2} + 6(23{{l}^{2}} + 3)\mu {{l}_{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;\mu (26(23 - 29\mu ){{l}^{2}} - 78\mu + 69))\omega _{1}^{4} \\ + \;\mu (3(5\mu - 2)(63\mu - 58){{l}^{2}} - ((26\mu + 69){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3(\mu + 3))l_{2}^{2} + 9(\mu - 1)(9\mu - 4) + 6((58\mu - 78){{l}^{2}} \\ + \;6\mu - 9){{l}_{2}})\omega _{1}^{2} + 2(\mu - 1)\mu ((32\mu - 26){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3(\mu - 1))l_{2}^{2})\omega _{2}^{4} - \omega _{1}^{2}(8(5{{l}^{2}} + 1)l_{2}^{2}\omega _{1}^{6} \\ - \;2((8(\mu - 3){{l}^{2}} + \mu - 4)l_{2}^{2} + 2(23{{l}^{2}} + 3)\mu {{l}_{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;4\mu ((29\mu - 26){{l}^{2}} + 3(\mu - 1)))\omega _{1}^{4} \\ + \;\mu (8(\mu - 1)((35\mu - 29){{l}^{2}} + 3(\mu - 1)) \\ \end{gathered} $$
$$\begin{gathered} + \;{{l}_{2}}(8(58\mu - 13){{l}^{2}} + 48\mu + ((391 - 754\mu ){{l}^{2}} \\ - \;87\mu + 51){{l}_{2}} - 12))\omega _{1}^{2} + 27(\mu - 1)\mu ((32\mu - 26){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} + \;3(\mu - 1))l_{2}^{2})\omega _{2}^{2} + 4l_{2}^{2}\omega _{1}^{4}(\mu ((23 - 26\mu ){{l}^{2}} - 3\mu \\ + \;3)\omega _{1}^{2} + (\mu - 1)\mu ((32\mu - 26){{l}^{2}} + 3(\mu - 1))))]. \\ \end{gathered} $$
$${{g}_{{0,2}}} = \frac{{ - 2h_{2}^{2}\mu }}{{\omega _{1}^{2}\omega _{2}^{2}(\omega _{1}^{2} - 4\omega _{2}^{2})({{l}_{2}}((3 - 2\mu ){{l}^{2}} - \mu + \omega _{2}^{2} + 3)}}$$
$$\begin{gathered} + \;(4 - 6\mu ){{l}^{2}} + 6({{l}^{2}} + 1)\omega _{2}^{2} - 2\mu + 2) \\ \times \;[4\omega _{2}^{4}(\omega _{1}^{2}(2(26{{l}^{2}} + 3)\mu \omega _{2}^{2} \\ \end{gathered} $$
$$\begin{gathered} + \;7\mu ((32\mu - 29){{l}^{2}} + 3(\mu - 1)) - 36(7{{l}^{2}} + 1)\omega _{2}^{4}) \\ + \;24\mu \omega _{2}^{2}((29 - 32\mu ){{l}^{2}} - 3\mu + 3) \\ \end{gathered} $$
$$\begin{gathered} + \;9(7{{l}^{2}} + 1)\omega _{2}^{2}\omega _{1}^{4}) + 2l_{2}^{2}\omega _{2}^{2}(\omega _{1}^{2}(2(23{{l}^{2}} + 3)\mu \omega _{2}^{2} \\ + \;\mu ((29\mu + 52){{l}^{2}} + 3\mu + 6) + 24(6{{l}^{2}} + 1)\omega _{2}^{4}) \\ \end{gathered} $$
$$\begin{gathered} + 24\mu \omega _{2}^{2}((29\mu - 26){{l}^{2}} + 3\mu - 3) - 6(6{{l}^{2}} + 1)\omega _{2}^{2}\omega _{1}^{4}) \\ - \;2{{l}_{2}}\omega _{2}^{2}( - 6\omega _{2}^{2}\omega _{1}^{4}({{l}^{2}}( - 8\mu + 6\omega _{2}^{2} + 7) - \mu \\ \end{gathered} $$
$$\begin{gathered} + \;\omega _{2}^{2} + 1) + \omega _{1}^{2}(8\omega _{2}^{4}(3 - {{l}^{2}}(\mu - 21)) \\ + \;\mu \omega _{2}^{2}(13(8 - 29\mu ){{l}^{2}} - 39\mu + 12) \\ \end{gathered} $$
$$\begin{gathered} + \;\mu ((\mu (175\mu - 416) + 232){{l}^{2}} + 3(\mu - 1)(5\mu - 8)) \\ + \;24(6{{l}^{2}} + 1)\omega _{2}^{6}) - 24\mu \omega _{2}^{2}(\omega _{2}^{2}((26 - 29\mu ){{l}^{2}} \\ \end{gathered} $$
$$\begin{gathered} - \;3\mu + 3) + (\mu - 1)((35\mu - 29){{l}^{2}} + 3(\mu - 1)))) \\ + \;l_{2}^{3}( - 6\omega _{2}^{2}\omega _{1}^{4}({{l}^{2}}( - 7\mu + 5\omega _{2}^{2} + 6) \\ \end{gathered} $$
$$\begin{gathered} - \;\mu + \omega _{2}^{2} + 1) + \omega _{1}^{2}( - 4\omega _{2}^{4}((62\mu - 36){{l}^{2}} \\ + \;9\mu - 6) + \mu \omega _{2}^{2}({{l}^{2}}(115 - 26\mu ) - 3(\mu - 5)) \\ \end{gathered} $$
$$\begin{gathered} + \;5(\mu - 1)\mu ((32\mu - 26){{l}^{2}} + 3(\mu - 1)) \\ + \;24(5{{l}^{2}} + 1)\omega _{2}^{6}) - 24\mu \omega _{2}^{2}(\omega _{2}^{2}((23 - 26\mu ){{l}^{2}} \\ - \;3\mu + 3) + (\mu - 1)((32\mu - 26){{l}^{2}} + 3(\mu - 1))))]. \\ \end{gathered} $$

APPENDIX C

The graphs (see Fig. 6) of \(f(\mu ,l)\) and \(g(\mu ,l)\) in the linear stability interval \(\left( {8(1 - {{l}^{2}}){\text{/}}9,\;1 - {{l}^{2}}} \right)\) for different values of \(l \in [0,1]\).

Fig. 6.
figure 6

The graphs of \(f(\mu ,l)\) and \(g(\mu ,l)\) for different values of \(l\): \(l = 0\) (a), 0.037 (b), 0.192 (c), 0.195 (d), 0.263 (e), and 0.293 (f).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Kumar, S. & Aggarwal, R. Effect of Finite Straight Segment on the Non-linear Stability of the Equilibrium Point in the Planar Robe’s Problem. Astron. Rep. 67, 424–437 (2023). https://doi.org/10.1134/S1063772923040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923040029

Keywords:

Navigation