Skip to main content
Log in

Activity Complexes and Coronal Holes on the Sun: Relationship Phenomenology

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The relationship between activity complexes (ACs) and coronal holes (CHs) is analyzed according to the data of the 24th cycle of solar activity. The following conclusions were obtained. (1) The first low-latitude coronal holes manifest themselves as protrusions (“trunks”) of polar coronal holes that extend towards an active region (AR) as part of activity complexes. (2) Isolated (not associated with polar coronal holes) low-latitude coronal holes arise as a result of the evolution of the “trunks” of polar coronal holes. (3) The substitution effect, when a coronal hole arises in place of a decayed activity complex of an active region, manifests itself not in the appearance of a new coronal hole instead of the active region, but in the spread (expansion or lengthening) of the already existing nearby coronal hole to the place of the decayed active region. Coronal holes are born from coronal holes, not from activity complexes, but activity complexes influence their location and shape. (4) High-latitude coronal holes are subject to differential rotation. Low-latitude isolated coronal holes interacting with activity complexes rotate at the Carrington speed. Low-latitude coronal holes not associated with activity complexes are subject to differential rotation. (5) The emergence of “trunks” of polar coronal holes is associated with the influence of active regions (primarily, active regions in the composition of activity complexes). (6) The previously made preliminary conclusion that all activity complexes at a certain stage of their development are associated with nearby coronal holes has been confirmed. This manifests itself in changes in the shape of the boundaries of coronal holes and in the peculiarities of the speed of rotation of coronal holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. R. Cranmer, Solar Phys. 6, 3 (2009).

    Google Scholar 

  2. A. F. Timothy, A. S. Krieger, and G. S. Vaiana, Solar Phys. 42, 135 (1975).

    Article  ADS  Google Scholar 

  3. J. Zirker, Coronal Holes and High-Speed Wind Streams (Colorado Assoc. Univ. Press, Boulder, CO, 1977).

    Book  Google Scholar 

  4. R. H. Levine, Astrophys. J. 218, 291 (1977).

    Article  ADS  Google Scholar 

  5. B. P. Filippov, Eruptive Processes on the Sun (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  6. V. N. Obridko and Yu. A. Nagovitsyn, Solar Activity, Cyclicity and Forecast Methods (VVM, St. Petersburg, 2017) [in Russian].

    Google Scholar 

  7. N. N. Stepanyan, in Solar Cycle (FTI, St. Petersburg, 1993), p. 36 [in Russian].

    Google Scholar 

  8. N. N. Stepanyan and E. V. Malanushenko, Izv. KrAO 97, 76 (2001).

    Google Scholar 

  9. S. G. Heinemann, S. J. Hofmeister, A. M. Veronig, and M. Temmer, Astrophys. J. 863, 29 (2018).

    Article  ADS  Google Scholar 

  10. R. F. Pinto, N. Poirier, A. P. Rouillard, and A. Kouloumvakos, Astron. Astrophys. 653, 92 (2021).

    Article  Google Scholar 

  11. J. D. Bohlin and N. R. Sheeley, Solar Phys. 56, 125 (1978).

    Article  ADS  Google Scholar 

  12. V. N. Obridko and B. D. Shel’ting, Soln. Dannye 1, 89 (1988).

    ADS  Google Scholar 

  13. J. E. Insley, Solar Phys. 160, 1 (1995).

    Article  ADS  Google Scholar 

  14. V. G. Ivanov and R. N. Ikhsanov, in Modern Problems of Solar Cyclicity, Proceedings of the Conference Dedicated to the Memory of M.N. Gnevyshev and A.I. Ol’, May 26–30, 1997 (GAO RAN, St. Petersburg, 1997), p. 76.

  15. V. G. Ivanov and R. N. Ikhsanov, in Modern Problems of Solar Cyclicity, Proceedings of the Conference Dedicated to the Memory of M.N. Gnevyshev and A.I. Ol’, May 26–30, 1997 (GAO RAN, St. Petersburg, 1997), p. 81.

  16. V. V. Kasinskii and V. M. Tomozov, Astron. Tsirk. 806, 1 (1974).

    ADS  Google Scholar 

  17. D. Bravo, Solar Phys. 173, 193 (1997).

    Article  ADS  Google Scholar 

  18. E. I. Mogilevsky, V. N. Obridko, and N. S. Shilova, Solar Phys. 176, 107 (1997).

    Article  ADS  Google Scholar 

  19. V. M. Malashchuk, V. G. Fainshtein, N. N. Stepanyan, G. V. Rudenko, and Ya. I. Egorov. Bull. Crimean Astrophys. Obs. 108, 70 (2012)

    Article  ADS  Google Scholar 

  20. V. M. Malashchuk and N. N. Stepanyan, Izv. KrAO 109, 148 (2013).

    Google Scholar 

  21. V. G. Fainshtein, V. M. Malashchuk, N. N. Stepanyan, G. V. Rudenko, and Ya. I. Egorov, Izv. KrAO 109, 156 (2013).

    Google Scholar 

  22. V. M. Malashchuk, V. G. Fainshtein, N. N. Stepanyan, and G. V. Rudenko, Izv. KrAO 112, 58 (2016).

    Google Scholar 

  23. V. G. Banin and S. A. Yazev, Soln. Dannye 1, 78 (1991).

    ADS  Google Scholar 

  24. V. A. Kovalenko, Solar Wind (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  25. N. V. Karachik, A. A. Pevtsov, and V. I. Abramenko, Astrophys. J. 714, 1672 (2010).

    Article  ADS  Google Scholar 

  26. S. A. Yazev, Izv. IGU, Ser.: Nauki Zemle 3, 226 (2010).

    Google Scholar 

  27. K. S. Tavastsherna and E. V. Polyakow, Geomagn. Aeron. 54, 953 (2014).

    Article  ADS  Google Scholar 

  28. V. N. Obridko and B. D. Shel’ting, Soln. Dannye 1, 89 (1988).

    ADS  Google Scholar 

  29. S. A. Yazev, Astron. Rep. 59, 228 (2015).

    Article  ADS  Google Scholar 

  30. V. Gaizauskas, K. L. Harvey, J. W. Harvey, and C. Zwaan, Astrophys. J. 141, 1502 (1983).

    Google Scholar 

  31. S. A. Yazev, The Phenomenon of Activity Complexes on the Sun (IGU, Irkutsk, 2014) [in Russian].

    Google Scholar 

  32. A. V. Mordvinov, S. A. Yazev, E. G. Rykova, and A. A. Dvorkina-Samarskaya, Soln.-Zemn. Fiz. 18, 69 (2011).

    Google Scholar 

  33. E. S. Isaeva, V. M. Tomozov, and S. A. Yazev, Astron. Rep. 62, 243 (2018).

    Article  ADS  Google Scholar 

  34. V. M. Tomozov, S. A. Yazev, and E. S. Isaeva, Astron. Rep. 64, 722 (2020).

    Article  ADS  Google Scholar 

  35. S. K. Antiochos, C. R. DeVore, J. T. Karpen, and Z. Mikiš, Astrophys. J. 671, 946 (2007).

    Article  ADS  Google Scholar 

  36. S. K. Antiochos, Z. Mikiš, V. S. Titov, R. Lionello, and J. A. Linker, Astrophys. J. 711, 112 (2011).

    Article  ADS  Google Scholar 

  37. V. S. Titov, Z. Mikiš, J. A. Linker, R. Lionello, and S. K. Antiochos, Astrophys. J. 731, 111 (2011).

    Article  ADS  Google Scholar 

  38. V. G. Fainshtein, N. N. Stepanyan, G. V. Rudenko, V. M. Malashchuk, and L. K. Kashapova, Izv. KrAO 106, 7 (2010).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the referees who made a number of useful remarks.

Funding

This work was supported by the Russian Ministry of Education and Science (state assignement FZZE-2020-0017, FZZE-2020-0024, and grant no. 075-ГЗ/Ц3569/278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Yazev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazev, S.A., Tomozov, V.M. & Isaeva, E.S. Activity Complexes and Coronal Holes on the Sun: Relationship Phenomenology. Astron. Rep. 66, 1050–1062 (2022). https://doi.org/10.1134/S1063772922100134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922100134

Keywords:

Navigation