Skip to main content
Log in

Spectral Energy Distribution for T Tauri Stars with a Debris Disk

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The analysis results of spectral energy distribution (SED) curves in the range 0.36–100 μm for 45 young WTTS-type stars and 9 comparison CTTS-type stars are presented. Two types of SED curves are observed according to the classification of the spectra of young stars. Stars with type III spectra show excess emission only in the far IR range, at λ ≥ 12 µm. Stars with type II spectra, in addition to emission in the far IR range, also show excess emission in the near IR range, at 2 μm < λ < 12 μm. A new subtype of IIId stars from the group of stars with type III spectra has been identified. These stars have a weak IR excess in the spectrum in the range λ ≥ 60 μm, signs of debris disks, and often show chromospheric activity. It is shown that 15 out of 45 WTTSs have UV excesses, and the same number of stars have near-IR excesses. Two of these stars are type II in their spectra and show signs of disk accretion. The physical parameters and parameters of excess radiation are determined, and the masses and ages of program stars are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Bouvier, S. H. P. Alencar, T. J. Harries, C. M. Johns-Krull, and M. M. Romanova, in Protostars and Planets V (Univ. Arizona Press, Tucson, AZ, 2007), p. 479.

  2. I. Appenzeller and R. Mundt, Astron. Astrophys. Rev. 1, 291 (1989).

    Article  ADS  Google Scholar 

  3. P. P. Petrov, Acta Astrophys. Taurica 2 1, 1 (2021).

  4. A. Nature a, L. Testi, J. Muzerolle, et al., Astron. Astrophys. 424, 603 (2004).

    Article  ADS  Google Scholar 

  5. R. Jayawardhana, S. Mohanty, and G. Basri, Astrophys. J. 592, 282 (2003).

    Article  ADS  Google Scholar 

  6. R. J. White and G. Basri, Astrophys. J. 582, 1109 (2003).

    Article  ADS  Google Scholar 

  7. D. L. Padgett, L. Cieza, K. R. Stapelfeldt, et al., Astrophys. J. 645, 128 (2006).

    Article  Google Scholar 

  8. Z. Wahhaj, L. Cieza, D. W. Koerner, et al., Astrophy. J. 724, 835 (2010).

    Article  ADS  Google Scholar 

  9. L. A. Cieza, D. Ruíz-Rodríguez, A. Hales, et al., Mon. Not. R. Astron. Soc. 482, 698 (2019).

    Article  ADS  Google Scholar 

  10. S. E. van Terwisga, A. Hacar, and E. F. van Dishoeck, Astron. Astrophys. 628, 85 (2019).

    Article  ADS  Google Scholar 

  11. S. L. Grant, C. C. Espaillat, J. Wendeborn, et al., Astrophys. J. 913, 123 (2021).

    Article  ADS  Google Scholar 

  12. E. E. Mamajek and L. A. Hillenbrand, Astrophys. J. 691, 1265 (2009).

    Article  ADS  Google Scholar 

  13. A. Ribas, B. Merın, H. Bouy, and L. T. Maud, Astron. Astrophys. 561, 54 (2014).

    Article  ADS  Google Scholar 

  14. L. Hartmann, G. Herczeg, and N. Calvet, Ann. Rev. Astron. Astrophys. 54, 135 (2016).

    Article  ADS  Google Scholar 

  15. Y. Hasegawa, J. T. Haworth, K. Hoadley, et al., Astrophys. J. 926, 23 (2022).

    Article  Google Scholar 

  16. L. Testi, T. Birnstiel, L. Ricci, et al., in Protostars and Planets VI (2014), p. 339.

    Google Scholar 

  17. A. Morbidelli and S. N. Raymond, J. Geophys. Res. (Planets) 121, 1962 (2016).

    Article  ADS  Google Scholar 

  18. A. J. Winter, C. J. Clarke, G. Rosotti, et al., Mon. Not. R. Astron. Soc. 478, 2700 (2018).

    Article  ADS  Google Scholar 

  19. A. Gras-Velazquez and T. P. Ray, Astron. Astrophys. 443, 541 (2005).

    Article  ADS  Google Scholar 

  20. L. A. Cieza, J. Olofsson, P. M. Harvey, et al., Astrophys. J. 762, 100 (2013).

    Article  ADS  Google Scholar 

  21. G. Duchene, A. Becker, Y. Yang, et al., Mon. Not. R. Astron. Soc. 469, 1783 (2017).

    Article  ADS  Google Scholar 

  22. K. Wood, C. J. Lada, J. E. Bjorkman, et al., Astrophys. J. 567, 1183 (2002).

    Article  ADS  Google Scholar 

  23. S. J. Kenyon and L. Hartmann, Astrophys. J. 323, 714 (1987).

    Article  ADS  Google Scholar 

  24. G. H. Herbig and K. R. Bell, Lick Observ. Bull., No. 1111 (1988).

  25. R. M. Cutri, M. F. Skrutskie, S. van Dyk, et al., 2MASS All Sky Catalog of Point Sources (2003).

  26. N. Epchtein, E. Deul, S. Derriere, et al., Astron. Astrophys. 349, 236 (1999).

    ADS  Google Scholar 

  27. R. M. Cutri, E. L. Wright, T. Conrow, et al., yCat 2328, 0C (2014).

  28. M. Moshir et al., IRAS Faint Source Catalogue, 0M (1990).

  29. M. J. Pecaut and E. E. Mamajek, Astrophys. J. Suppl. Ser. 208, 9 (2013).

    Article  ADS  Google Scholar 

  30. D. Lin, N. A. Webb, and D. Barret, Astrophys. J. 756, 27 (2012).

    Article  ADS  Google Scholar 

  31. L. A. Hillenbrand, S. E. Strom, N. Calvet, et al., Astron. J. 116, 1816 (1998).

    Article  ADS  Google Scholar 

  32. K. M. Strom, S. E. Strom, S. Edwards, et al., Astron. J. 97, 1451 (1989).

    Article  ADS  Google Scholar 

  33. K. N. Grankin, S. Yu. Melnikov, J. Bouvier, et al., Astron. Astrophys. 461, 183 (2007).

    Article  ADS  Google Scholar 

  34. W. Herbst and V. S. Shevchenko, Astron. J. 118, 1043 (1999).

    Article  ADS  Google Scholar 

  35. S. J. Kenyon and L. Hartmann, Astrophys. J. Suppl. Ser. 101, 117 (1995).

    Article  ADS  Google Scholar 

  36. G. H. Rieke and M. J. Lebofsky, Astrophys. J. 288, 618 (1985).

    Article  ADS  Google Scholar 

  37. F. Castelli and R. I. Kurucz, ATLAS9 (2004). https://www.user.oats.inaf.it/castelli/grids/*.

  38. H. Campins, G. H. Rieke, and M. J. Lebofsky, Astron. J. 90, 896 (1985).

    Article  ADS  Google Scholar 

  39. L. Decin, B. Vandenbussche, K. Waelkens, et al., Astron. Astrophys. 400, 695 (2003).

    Article  ADS  Google Scholar 

  40. T. Kinman and F. Castelli, Astron. Astrophys. 391, 1039 (2002).

    Article  ADS  Google Scholar 

  41. N. Z. Ismailov, A. F. Kholtygin, I. I. Romanyuk, and M. A. Pogodin, Azerb. Astron. J. 16, 5 (2021).

    Google Scholar 

  42. N. Z. Ismailov, A. F. Kholtygin, I. I. Romanyuk, M. A. Pogodin, and A. V. Moiseeva, Astrophys. Bull. 76, 415 (2021).

    Article  ADS  Google Scholar 

  43. H. H. Aumann, F. C. Gillett, C. A. Beichman, et al., Astrophys. J. 278, 23 (1984).

    Article  Google Scholar 

  44. H. H. Aumann, Publ. Astron. Soc. Pacif. 97, 885 (1985).

    Article  ADS  Google Scholar 

  45. L. A. Hillenbrand, S. E. Strom, F. J. Vrba, and J. Keene, Astrophys. J. 397, 613 (1992).

    Article  ADS  Google Scholar 

  46. C. J. Lada, IAU Symp. 115, 1 (1987).

  47. N. J. Evans II, M. M. Dunham, J. K. Jørgensen, et al., Astrophys. J. Suppl. Ser. 181, 321 (2009).

    Article  ADS  Google Scholar 

  48. T. A. Stuber and S. Wolf, Astron. Astrophys. 658, 121 (2022).

    Article  ADS  Google Scholar 

  49. S. M. Andrews, J. Huang, L. M. Pérez, et al., Astrophys. J. 869, L41 (2018).

    Article  ADS  Google Scholar 

  50. H. Avenhaus, S. P. Quanz, A. Garufi, et al., Astrophys. J. 863, 44 (2018).

    Article  ADS  Google Scholar 

  51. L. Siess, E. Dufour, and M. Forestini, Astron. Astrophys. 358, 593 (2000).

    ADS  Google Scholar 

  52. L. Ingleby, N. Calvet, J. Hern, et al., Astron. J. 141, 127 (2011).

    Article  ADS  Google Scholar 

  53. A. Frasca, K. Biazzo, and J. M. Alcalá, Astron. Astrophys. 602, 33F (2017).

    Article  Google Scholar 

  54. R. J. Harris, S. M. Andrews, and D. J. Wilner, Astrophys. J. 751, 115 (2012).

    Article  ADS  Google Scholar 

  55. J. H. M. M. Schmitt, P. Ioannidis, J. Robrade, et al., Astron. Astrophys. 652, 135 (2021).

    Article  Google Scholar 

  56. M. Corcoran and T. P. Ray, Astron. Astrophys. 331, 147 (1998).

    ADS  Google Scholar 

  57. C. F. Manara, A. Natta, G. P. Rosotti, et al., Astron. Astrophys. 639, 58 (2020).

    Article  Google Scholar 

  58. A. Dodin, S. Lamzin, P. Petrov, et al., Mon. Not. R. Astron. Soc. 497, 4322 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the anonymous reviewer for their detailed and constructive feedback, which allowed us to improve the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Z. Ismailov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismailov, N.Z., Valiev, U.S. Spectral Energy Distribution for T Tauri Stars with a Debris Disk. Astron. Rep. 66, 965–980 (2022). https://doi.org/10.1134/S1063772922100067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922100067

Keywords:

Navigation