Skip to main content
Log in

T Tauri stars: Physical parameters and evolutionary status

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Long-term homogeneous photometry for 35 classical T Tauri stars (CTTS) in the Taurus–Auriga star-forming region has been analyzed. Reliable effective temperatures, interstellar extinctions, luminosities, radii, masses, and ages have been determined for the CTTS. The physical parameters and evolutionary status of 35 CTTS from this work and 34 weak-line T Tauri stars (WTTS) from previous studies have been compared. The luminosities, radii, and rotation periods of low-mass (0.3–1.1 M ) CTTS are shown to be, on average, greater than those of low-mass WTTS, in good agreement with the evolutionary status of these two subgroups. The mean age of the younger subgroup of WTTS from our sample (2.3 Myr) essentially coincides with the mean duration of the protoplanetary disk accretion phase (2.3 Myr) for a representative sample of low-mass stars in seven young stellar clusters. The accretion disk dissipation time scale for the younger subgroup of CTTS (<4 Myr) in the Taurus–Auriga star-forming region is shown to be no greater than 0.4 Myr, in good agreement with the short protoplanetary disk dissipation time scale that is predicted by present-day protoplanetary disk evolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. P. Alencar, P. S. Teixeira, M. M. Guimara˜ es, P. T. McGinnis, J. F. Gameiro, J. Bouvier, S. Aigrain, E. Flaccomio, and F. Favata, Astron. Astrophys. 519, A88 (2010).

    Article  ADS  Google Scholar 

  2. R. D. Alexander, C. J. Clarke, and J. E. Pringle, Mon. Not. R. Astron. Soc. 369, 216 (2006a).

    Article  ADS  Google Scholar 

  3. R. D. Alexander, C. J. Clarke, and J. E. Pringle, Mon. Not. R. Astron. Soc. 369, 229 (2006b).

    Article  ADS  Google Scholar 

  4. P. André, D. Ward-Thompson, and M. Barsony, Astrophys. J. 406, 122 (1993).

    Article  ADS  Google Scholar 

  5. S. M. Andrews, K. A. Rosenfeld, A. L. Kraus, and D. J. Wilner, Astrophys. J. 771, 129 (2013).

    Article  ADS  Google Scholar 

  6. S. A. Artemenko, K. N. Grankin, and P. P. Petrov, Astron. Lett 38, 783 (2012).

    Article  ADS  Google Scholar 

  7. M. Bessell, Astron. J. 101, 662 (1991).

    Article  ADS  Google Scholar 

  8. L. Cieza, D. L. Padgett, K. R. Stapelfeldt, J.-C. Augereau, P. Harvey, N. J. Evans II, B. Merín, D. Koerner, et al., Astrophys. J. 667, 308 (2007).

    Article  ADS  Google Scholar 

  9. M. Cohen and L. Kuhi, Astrophys. J. Suppl. Ser. 41, 743 (1979).

    Article  ADS  Google Scholar 

  10. D. Fedele, M. E. van den Ancker, T. Henning, R. Jayawardhana, and J. M. Oliveira, Astron. Astrophys. 510, 72 (2010).

    Article  ADS  Google Scholar 

  11. W. Fischer, S. Edwards, L. Hillenbrand, and J. Kwan, Astrophys. J. 730, 73 (2011).

    Article  ADS  Google Scholar 

  12. E. Furlan, L. Hartmann, N. Calvet, P. D’Alessio, R. Franco-Hernández, W. J. Forrest, D. M. Watson, K. I. Uchida, et al., Astrophys. J. Suppl. Ser. 165, 568 (2006).

    Article  ADS  Google Scholar 

  13. E. Furlan, K. L. Luhman, C. Espaillat, P. D’Alessio, L. Adame, P. Manoj, K. H. Kim, D. M. Watson, et al., Astrophys. J. Suppl. Ser. 195, 3 (2011).

    Article  ADS  Google Scholar 

  14. S. P. Goodwin, A. P. Whitworth, and D. Ward-Thompson, Astron. Astrophys. 419, 543 (2004).

    Article  ADS  Google Scholar 

  15. K. N. Grankin, Astron. Lett. 24, 497 (1998).

    ADS  Google Scholar 

  16. K. N. Grankin, S. Yu. Melnikov, J. Bouvier, W. Herbst, and V. S. Shevchenko, Astron. Astrophys. 461, 183 (2007).

    Article  ADS  Google Scholar 

  17. K. N. Grankin, J. Bouvier, W. Herbst, and S. Yu. Melnikov, Astron. Astrophys. 479, 827 (2008).

    Article  ADS  Google Scholar 

  18. K. N. Grankin, Astron. Lett. 39, 251 (2013a).

    Article  ADS  Google Scholar 

  19. K. N. Grankin, Astron. Lett. 39, 336 (2013b).

    Article  ADS  Google Scholar 

  20. K. N. Grankin, Astron. Lett. 39, 446 (2013c).

    Article  ADS  Google Scholar 

  21. M. Güdel, K. R. Briggs, K. Arzner, M. Audard, J. Bouvier, E. D. Feigelson, E. Franciosini, A. Glauser, et al., Astron. Astrophys. 468, 353 (2007).

    Article  ADS  Google Scholar 

  22. E. Gullbring, L. Hartmann, C. Briceno, and N. Calvet, Astrophys. J. 492, 323 (1998).

    Article  ADS  Google Scholar 

  23. R. J. Harris, S. M. Andrews, D. J. Wilner, and A. L. Kraus, Astrophys. J. 751, 115 (2012).

    Article  ADS  Google Scholar 

  24. P. Hartigan, S. Edwards, and L. Ghandour, Astrophys. J. 452, 736 (1995).

    Article  ADS  Google Scholar 

  25. G. J. Herczeg and L. A. Hillenbrand, Astrophys. J. 786, 97 (2014).

    Article  ADS  Google Scholar 

  26. L. Ingleby, N. Calvet, G. Herczeg, A. Blaty, F. Walter, D. Ardila, R. Alexander, S. Edwards, et al., Astrophys. J. 767, 112 (2013).

    Article  ADS  Google Scholar 

  27. C. de Jager and H. Nieuwenhuijzen, Astron. Astrophys. 177, 217 (1987).

    ADS  Google Scholar 

  28. C. M. Johns-Krull, J. A. Valenti, and J. L. Linsky, Astrophys. J. 539, 815 (2000).

    Article  ADS  Google Scholar 

  29. H. L. Johnson, in Nebulae and Interstellar Matter, Ed. by B. M. Middlehurst and L. H. Aller (Univ. Chicago Press, Chicago, 1968), p. 167.

  30. S. J. Kenyon and L. Hartmann, Astrophys. J. Suppl. Ser. 101, 117 (1995).

    Article  ADS  Google Scholar 

  31. S. J. Kenyon, M. Gómez, and B. A. Whitney, in Handbook of Star Forming Regions, Vol. 1: The Northern Sky, Ed. by Bo Reipurth (ASPMonograph, 2008), Vol. 4, p. 405.

    Google Scholar 

  32. P. Kervella and P. Fouqué, Astron. Astrophys. 491, 855 (2008).

    Article  ADS  Google Scholar 

  33. C. J. Lada, in Star Forming Regions, Proceedings of the IAU Symp. No. 115, Ed. by M. Peimbert and J. Jugaku (Cambridge Univ. Press, Cambridge, 1987), p. 1.

    Google Scholar 

  34. L. Loinard, R. M. Torres, A. J. Mioduszewski, L F. Rodríguez, R. A. González-Lópezlira, R. Lachaume, V. Vázquez, and E. González, Astrophys. J. 671, 546 (2007).

    Article  ADS  Google Scholar 

  35. K. L. Luhman, J. R. Stauffer, A. A. Muench, G. H. Rieke, E. A. Lada, J. Bouvier, and C. J. Lada, Astrophys. J. 593, 1093 (2003).

    Article  ADS  Google Scholar 

  36. K. L. Luhman, E. E. Mamajek, P. R. Allen, and K. L. Cruz, Astrophys. J. 703, 399 (2009).

    Article  ADS  Google Scholar 

  37. M. K. McClure, N. Calvet, C. Espaillat, L. Hartmann, J. Hernández, L. Ingleby, K. L. Luhman, P. D’Alessio, and B. Sargent, Astrophys. J. 769, 73 (2013).

    Article  ADS  Google Scholar 

  38. D. C. Nguyen, R. Jayawardhana, M. H. van Kerkwijk, A. Brandeker, A. Scholz, and I. Damjanov, Astrophys. 695, 1648 (2009).

    Article  ADS  Google Scholar 

  39. P. V. Novitskii and I. A. Zograf, Estimation of Measurement Errors (Energoatomizdat, Leningrad, 1985), p. 248 [in Russian].

    Google Scholar 

  40. P. P. Petrov, Astrophysics 46, 506 (2003).

    Article  ADS  Google Scholar 

  41. P. P. Petrov and B. S. Kozak, Astron. Rep. 51, 500 (2007).

    Article  ADS  Google Scholar 

  42. L. M. Rebull, D. L. Padgett, C.-E. McCabe, L. A. Hillenbrand, K. R. Stapelfeldt, A. Noriega-Crespo, S. J. Carey, T. Brooke, et al., Astrophys. J. Suppl. Ser. 186, 259 (2010).

    Article  ADS  Google Scholar 

  43. L. Siess, E. Dufour, and M. Forestini, Astron. Astrophys. 358, 593 (2000).

    ADS  Google Scholar 

  44. M. F. Skrutskie, D. Dutkevitch, S. E. Strom, S. Edwards, K. M. Strom, and M. A. Shure, Astron. J. 99, 1187 (1990).

    Article  ADS  Google Scholar 

  45. K. M. Strom, F. P. Wilkin, S. E. Strom, and R. L. Seaman, Astron. J. 98, 1444 (1989).

    Article  ADS  Google Scholar 

  46. A. Tokunaga, Allen’s Astrophysical Quantities, 4th ed., Ed. by A. N. Cox (Springer, New York, 2000), p. 143.

  47. R. M. Torres, L. Loinard, A. J. Mioduszewski, and L. F. Rodríguez, Astrophys. J. 698, 242 (2009).

    Article  ADS  Google Scholar 

  48. G. Torres, J. Andersen, and A. Giménez, Astron. Astrophys. Rev. 18, 67 (2010).

    Article  ADS  Google Scholar 

  49. R. M. Torres, L. Loinard, A. J. Mioduszewski, A. F. Boden, R. Franco-Hernández, W. H. T. Vlemmings, and L. F. Rodríguez, Astrophys. J. 747, 18 (2012).

    Article  ADS  Google Scholar 

  50. J. A. Valenti, G. Basri, and C. M. Johns, Astron. J. 106, 2024 (1993).

    Article  ADS  Google Scholar 

  51. R. J. White and A. M. Ghez, Astrophys. J. 556, 265 (2001).

    Article  ADS  Google Scholar 

  52. J. P. Williams and L. A. Cieza, Ann. Rev. Astron. Astrophys. 49, 67 (2011).

    Article  ADS  Google Scholar 

  53. S. J. Wolk and F. M. Walter, Astron. J. 111, 2066 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Grankin.

Additional information

Original Russian Text cK.N. Grankin, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 5, pp. 353–368.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grankin, K.N. T Tauri stars: Physical parameters and evolutionary status. Astron. Lett. 42, 314–328 (2016). https://doi.org/10.1134/S1063773716050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716050030

Keywords

Navigation