Skip to main content
Log in

Galaxies and Clusters of Galaxies in Observations and Numerical Models

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An analysis of the properties of 1157 galaxies, groups and clusters of galaxies confirms the dependence of the virial velocity on the halo mass \({{v}_{{{\text{vir}}}}} = {{v}_{m}}{{({{M}_{{{\text{vir}}}}}{\text{/}}{{10}^{{12}}}{\kern 1pt} {{M}_{ \odot }})}^{{1/3}}}\) with a single exponent and different values of \({{v}_{m}} \simeq 400\) km/s for galaxies with \({{M}_{{{\text{vir}}}}} \leqslant {{10}^{{12}}}{\kern 1pt} {{M}_{ \odot }}\) and \({{v}_{m}} \simeq 160\) km/s for galaxy clusters with \({{M}_{{{\text{vir}}}}} \geqslant {{10}^{{12}}}{\kern 1pt} {{M}_{ \odot }}\). A single exponent confirms the high degree of universality of the dark matter halo formation processes, and the difference in values of \({{v}_{m}}\) corresponds to the well-known difference in the average densities of galaxies and galaxy clusters and introduces a new scale \(M \simeq {{10}^{{12}}}{\kern 1pt} {{M}_{ \odot }}\) into the perturbation power spectrum. Modern numerical models using the power spectrum obtained from the WMAP and Planck observations reproduce well the observed properties of galaxy clusters, but cannot reproduce the observed parameters of galaxies. It is also shown that the cusp in the dark matter density profile leads to a finite density of gas and stars at the center of the halos (Burkert profile).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, et al., Astrophys. J. Suppl. 192, 18 (2011).

    Article  Google Scholar 

  2. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al., Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  3. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, et al., Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  4. M. McQuinn, Ann. Rev. Astron. Astrophys. 54, 313 (2016).

    Article  ADS  Google Scholar 

  5. J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017).

    Article  ADS  Google Scholar 

  6. A. V. Zasov, A. S. Saburova, A. V. Khoperskov, and S. A. Khoperskov, Phys. Usp. 60, 3 (2017).

    Article  ADS  Google Scholar 

  7. T. Naab and J. P. Ostriker, Ann. Rev. Astron. Astrophys. 55, 59 (2017).

    Article  ADS  Google Scholar 

  8. J. Tumlinson, M. Peebles, and J. Werk, Ann. Rev. Astron. Astrophys. 55, 389 (2017).

    Article  ADS  Google Scholar 

  9. R. Wechsler and J. Tinker, Ann. Rev. Astron. Astrophys. 56, 435 (2018).

    Article  ADS  Google Scholar 

  10. P. Salucci, Astron. Astrophys. Rev. 27, 2 (2019).

    Article  ADS  Google Scholar 

  11. J. Zavala and C. S. Frenk, Galaxies 7 (4), 81 (2019).

    Article  ADS  Google Scholar 

  12. J. D. Simon, Ann. Rev. Astron. Astrophys. 57, 375 (2019).

    Article  ADS  Google Scholar 

  13. I. de Martino, S. S. Chakrebarty, V. Cesare, A. Gallo, L. Ostorero, and A. Diaferio, Universe 6, 107 (2020).

    Article  ADS  Google Scholar 

  14. L. Lovisari, S. Ettori, M. Gaspari, and P. Giles, Universe 7, 139 (2021).

    Article  ADS  Google Scholar 

  15. T. Ishiyama, Astrophys. J. 788, 27 (2014).

    Article  ADS  Google Scholar 

  16. J. Wang, S. Bose, C. Frenk, L. Gao, A. Jenkins, V. Springel, and S. D. M. White, Nature (London, U.K.) 585, 39 (2020).

    Article  ADS  Google Scholar 

  17. A. Bayer, A. Banerjee, and Yu. Feng, J. Cosmol. Astropart. Phys. 2021(01), 016 (2021).

  18. E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, et al., Astropart. Phys. 131, 102604 (2021); arXiv: 2008.11283 [astro-ph.CO]; arXiv: 2008.11284 [astro-ph.CO]; arXiv: 2008.11285 [astro-ph.CO].

  19. L. A. Anchordoqui, E. di Valentino, S. Pan, and W. Yang, J. High Energy Astrophys. 32, 28 (2021).

    Article  ADS  Google Scholar 

  20. W. Beenakker and D. Venhoek, arXiv: 2101.01372 [astro-ph.CO] (2021).

  21. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  22. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, L101 (1967).

    Article  ADS  Google Scholar 

  23. J. Fillmore and P. Goldreich, Astrophys. J. 281, 1 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Gurevich and K. Zybin, Phys. Usp. 38, 687 (1995).

    Article  ADS  Google Scholar 

  25. M. Boylan-Kolchin, V. Springel, S. White, A. Jenkins, and G. Lemson, Mon. Not. R. Astron. Soc. 398, 1150 (2009).

    Article  ADS  Google Scholar 

  26. A. Klypin, S. Trujillo-Gomez, and J. Primack, Astrophys. J. 740, 102 (2011).

    Article  ADS  Google Scholar 

  27. A. Klypin, G. Yepes, S. Gottlöber, F. Prada, and S. Heß, Mon. Not. R. Astron. Soc. 457, 4340 (2016).

    Article  ADS  Google Scholar 

  28. T. J. Armitage, D. J. Barnes, S. T. Kay, Y. M. Bahe, C. dalla Vecchia, R. A. Crain, and T. Theuns, Mon. Not. R. Astron. Soc. 474, 3746 (2018).

    Article  ADS  Google Scholar 

  29. L. Lovisari, G. Schellenberger, M. Sereno, S. Ettori, et al., Astrophys. J. 892, 102 (2020).

    Article  ADS  Google Scholar 

  30. C. Sifón, H. Hoekstra, M. Cacciato, M. Viola, F. Kohlinger, R. F. J. van der Burg, D. J. Sand, and M. L. Graham, Astron. Astrophys. 575, A48 (2015).

    Article  ADS  Google Scholar 

  31. M. Arnaud, E. Pointecouteau, and G. W. Pratt, Astron. Astrophys. 441, 893 (2005).

    Article  ADS  Google Scholar 

  32. E. Pointecouteau, M. Arnaud, and G. W. Pratt, Astron. Astrophys. 435, 1 (2005).

    Article  ADS  Google Scholar 

  33. G. W. Pratt, M. Arnaud, and E. Pointecouteau, Astron. Astrophys. 446, 429 (2006).

    Article  ADS  Google Scholar 

  34. J. Merten, M. Meneghetti, M. Postmaan, K. Umetsu, et al., Astrophys. J. 806, 4 (2015); arXiv: 1404.1376 [astro-ph.CO].

    Article  ADS  Google Scholar 

  35. R. Herbonnet, C. Sifón, H. Hoekstra, Y. Bahé, et al., arXiv: 1912.04414 [astro-ph.CO] (2019).

  36. Z. Zhu, H. Xu, J. Wang, J. Gu, et al., arXiv: 1511.04699 [astro-ph.CO] (2019).

  37. D. Makarov and I. Karachentsev, Mon. Not. R. -Astron. Soc. 412, 2498 (2011).

    Article  ADS  Google Scholar 

  38. M. G. Walker, M. Mateo, E. W. Olszewski, J. Penarrubia, N. W. Evans, and G. Gilmore, Astrophys. J. 704, 1274 (2009).

    Article  ADS  Google Scholar 

  39. J. S. Gannon, B. T. Dullo, D. A. Forbes, R. M. Rich, et al., Mon. Not. R. Astron. Soc. 502, 3144 (2021).

    Article  ADS  Google Scholar 

  40. A. Sipolsand and A. Pavlovich, Galaxies 8, 36 (2020).

    Article  ADS  Google Scholar 

  41. B. Epinat, P. Amram, M. Marcelin, C. Balkowski, et al., Mon. Not. R. Astron. Soc. 388, 500 (2008).

    Article  ADS  Google Scholar 

  42. B. Epinat, P. Amram, and M. Marcelin, Mon. Not. R. Astron. Soc. 390, 466 (2008).

    ADS  Google Scholar 

  43. D. Bizyaev, D. I. Makarov, V. P. Reshetnikov, A. V. Mosenkov, S. J. Kautsch, and A. V. Antipova, Astrophys. J. 914, 104 (2021).

    Article  ADS  Google Scholar 

  44. M. Demiański, A. Doroshkevich, N. Larchenkova, and S. Pilipenko, Astron. Rep. 64, 883 (2020).

    Article  ADS  Google Scholar 

  45. M. Demiański and A. Doroshkevich, arXiv: 2009.04256 [astro-ph.CO] (2020).

  46. J. Shull, B. Smith, and C. Danforth, Astrophys. J. 759, 23 (2012).

    Article  ADS  Google Scholar 

  47. G. Voit, Adv. Space Res. 36, 701 (2005).

    Article  ADS  Google Scholar 

  48. A. E. Evrard, J. Bialek, M. Busha, M. White, et al., Astrophys. J. 672, 122 (2008).

    Article  ADS  Google Scholar 

  49. M. Demiański, A. Doroshkevich, and T. Larchenkova, Astron. Lett. 46, 359 (2020).

    Article  ADS  Google Scholar 

  50. A. Klypin, I. Karachentsev, D. Makarov, and O. Nasonova, Mon. Not. R. Astron. Soc. 454, 1798 (2015).

    Article  ADS  Google Scholar 

  51. J. Nawarro, C. Frenk, and S. White, Mon. Not. R. Astron. Soc. 275, 720 (1997).

    ADS  Google Scholar 

  52. J. Nawarro, C. Frenk, and S. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  53. D. Marchesini, E. D’Onghia, G. Chincarini, C. Firmani, P. Conconi, E. Molinari, and A. Zacchei, Astrophys. J. 575, 801 (2002).

    ADS  Google Scholar 

  54. M. Demiański, A. Doroshkevich, and T. Larchenkova, Astron. Lett. (2022, in press).

  55. A. Burkert, Astrophys. J. 447, L25 (1995).

    Article  ADS  Google Scholar 

  56. D. R. Weisz, E. D. Skillman, S. L. Hidalgo, M. Monelli, et al., Astrophys. J. 789, 24 (2014).

    Article  ADS  Google Scholar 

  57. D. R. Weisz, A. E. Dolphin, E. D. Skillman, J. Holtzman, K. M. Gilbert, J. J. Dalcanton, and B. F. Williams, Astrophys. J. 789, 147 (2014).

    Article  ADS  Google Scholar 

  58. W. Press and P. Schechter, Astrophys. J. 187, 425 (1974).

    Article  ADS  Google Scholar 

  59. J. Bond, S. Cole, G. Efstathiou, and N. Kaiser, Astrophys. J. 379, 440 (1991).

    Article  ADS  Google Scholar 

  60. R. Sheth and G. Tormen, Mon. Not. R. Astron. Soc. 329, 61 (2002).

    Article  ADS  Google Scholar 

  61. R. Sheth, Mon. Not. R. Astron. Soc. 345, 1200 (2003).

    Article  ADS  Google Scholar 

  62. R. Sheth and G. Tormen, Mon. Not. R. Astron. Soc. 350, 1385 (2004).

    Article  ADS  Google Scholar 

  63. R. Sheth and G. Tormen, Mon. Not. R. Astron. Soc. 349, 1464 (2004).

    Article  ADS  Google Scholar 

  64. J. Silk, Astrophys. J. 151, 459 (1968).

    Article  ADS  Google Scholar 

  65. Ya. Zel’dovich and I. Novikov, Relativistic Astrophysics, Vol. 2: The Structure and Evolution of the Universe (Nauka, Moscow, 1975; Univ. Chicago Press, Chicago, 1983).

  66. J. Bardeen, J. Bond, N. Kaiser, and A. Szalay, Astrophys. J. 304, 15 (1986).

    Article  ADS  Google Scholar 

  67. A. Doroshkevich, M. Khlopov, R. Sunyaev, A. Szalay, and Ya. Zeldovich, Ann. (N.Y.) Acad. Sci. 375, 32 (1981).

    Article  ADS  Google Scholar 

  68. G. Blumenthal, H. Pagels, and J. Primack, Nature (London, U.K.) 299, 37 (1982).

    Article  ADS  Google Scholar 

  69. M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and A. Riotto, Phys. Rev. D 71, 063534 (2005).

  70. A. Serebrov, R. Samoilov, and M. Chaikovskii, arXiv: 2109.12385 [hep-ph] (2021).

  71. V. V. Barinov, R. A. Burenin, D. S. Gorbunov, and R. A. Krivonos, Phys. Rev. D 103, 063512 (2021).

  72. V. V. Barinov, B. T. Cleveland, S. N. Danshin, H. Ejiri, et al., arXiv: 2109.11482 [nucl-ex] (2021).

  73. V. Barinov and D. Gorbunov, arXiv: 2109.14654 [hep-ph] (2021).

  74. N. Fiza, M. Masud, and M. Mitra, J. High Energy Phys. 2021 (09), 16 (2021).

    Article  Google Scholar 

  75. S. Schoppmann, arXiv: 2109.13541 [hep-ex] (2021).

  76. V. Khruschov and S. Fomichev, Universe 8, 97 (2022).

    Article  ADS  Google Scholar 

  77. A. E. Bayer, F. Villaescusa-Navarro, E. Massara, J. Liu, et al., arXiv: 2102.05049 [astro-ph.CO] (2021).

  78. G. Parimbelli, G. Scelfo, S. K. Giri, A. Schneider, M. Archidiacono, S. Camera, and M. Viel, arXiv: 2106.04588 [astro-ph.CO] (2021).

  79. A. V. Kravtsov, Astrophys. J. Lett. 764, L31 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the referee for constructive comments.

Funding

The work was partially carried out within the framework of the FIAN NNG 41-2020 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Demyansky.

Additional information

Translated by T. Sokolova

Appendices

APPENDIX I

1.1 DENSITY PROFILE OF THE DM HALO

Numerical models indicate that a typical DM halo density profile is well described by a simple formula [51]:

$$\begin{gathered} {{\rho }_{{{\text{DM}}}}} = \frac{{{{\rho }_{0}}}}{{x{{{(1 + x)}}^{2}}}}, \\ {{M}_{{{\text{DM}}}}} = {{M}_{0}}{{f}_{m}}(x), \\ \end{gathered} $$
$$\begin{gathered} {{M}_{0}} = 4\pi {{\rho }_{0}}r_{0}^{3}, \\ x = r{\text{/}}{{r}_{0}}, \\ \end{gathered} $$
(25)
$$\begin{gathered} {{f}_{m}}(x) = \ln (1 + x) - \frac{x}{{1 + x}}, \\ v_{0}^{2} = G\frac{{{{M}_{0}}}}{{{{r}_{0}}}}. \\ \end{gathered} $$

Two constants \({{\rho }_{0}},\;{{r}_{0}}\) (or \({{M}_{0}},\;{{v}_{0}}\)) determine the parameters of the DM halo. The often-discussed difference between the observed stellar density profile and (25) (the core–cusp problem) was discussed above in Section 4.

With such a density profile, the gravitational potential \(\Phi (x)\) is equal to

$$\begin{gathered} \Phi (x) = v_{0}^{2}\phi (x), \\ \phi (x) = \frac{x}{{1 + x}} - \frac{{{{c}_{{{\text{vir}}}}}}}{{1 + {{c}_{{{\text{vir}}}}}}} - \frac{{{{f}_{m}}(x)}}{x}, \\ x \leqslant {{c}_{{{\text{vir}}}}}, \\ \end{gathered} $$
(26)

thus

$$\Phi (x) = - v_{0}^{2}{{f}_{m}}({{c}_{{{\text{vir}}}}}){\text{/}}x,$$
$$x = r{\text{/}}{{r}_{0}} \geqslant {{c}_{{{\text{vir}}}}} = {{R}_{{{\text{vir}}}}}{\text{/}}{{r}_{0}},$$

where \({{R}_{{{\text{vir}}}}}\) is the virial radius.

The density profile (25) requires the introduction of an artificial virial radius. Numerous attempts to introduce a natural definition of the virial radius \({{R}_{{{\text{vir}}}}}\) have not been successful [79]. Based on observations of galaxy clusters [31, 34] \({{c}_{{{\text{vir}}}}} \simeq 4{-} 7\).

For the density profile (25), the circular velocity \({{v}_{c}}\) weakly depends on the radius

$$v_{c}^{2} = GM{\text{/}}r = v_{0}^{2}{{f}_{m}}(x){\text{/}}x \simeq 0.2{\kern 1pt} v_{0}^{2},\quad 2 \leqslant x \leqslant 8.$$
(27)

This means that in such a model, the observed dependence (1) \({{v}_{{{\text{vir}}}}}(M) \propto M_{{{\text{vir}}}}^{{1/3}}\) leads to the dependence of the basic parameters of the DM halo and \({{c}_{{{\text{vir}}}}}\):

$${{v}_{0}} = 2.25{\kern 1pt} {{{v}}_{m}},\quad {{\rho }_{0}} \propto c_{{{\text{vir}}}}^{2} = ({{R}_{{{\text{vir}}}}}{\text{/}}{{r}_{0}}{{)}^{2}}.$$
(28)

These relations relate the basic parameters of the DM halo (\({{v}_{0}},\;{{M}_{0}},\;{{r}_{0}},\;{{\rho }_{0}}\)) to the virial parameters (\({{R}_{{{\text{vir}}}}},\;{{c}_{{{\text{vir}}}}},\;{{M}_{{{\text{vir}}}}}\)), and the DM halo population becomes a one-parameter population. The same relations simplify the use of the observed rotation curves of galaxies to determine the function \({{v}_{{{\text{vir}}}}}({{M}_{{{\text{vir}}}}})\).

APPENDIX II

1.1 ROTATION CURVES OF THE DM HALO

For the density profile (25) far from the center \((x \geqslant 2)\), the gravitational potential changes slowly, which makes it possible to do without knowing the exact value of the virial radius. Feature (27) of the d-ensity profile of the DM halo (partially) explains the observations of a flat velocity profile at the periphery of the DM halo. The same feature makes it possible to estimate the virial mass and circular velocity of the DM halo (3) without specifying the actual value of \({{R}_{{{\text{vir}}}}}\).

The catalogs of galaxy rotation curves contain the observed radial velocity dispersions of stars, which in a centrally symmetric gravitational field are related to the gravitational potential and proper random motions of stars

$$\sigma _{v}^{2}(\xi ) = v_{0}^{2}\langle \phi (\xi )\rangle + v_{T}^{2}(\xi ),$$
(29)

where \(\xi \) is the distance from the halo center in the plane of the sky, \(v_{0}^{2}\langle \phi (\xi )\rangle \) is the DM potential averaged over the line of sight, and \({{v}_{T}}(\xi )\) is the speed of the random motion of stars.

For the considered model (25)

$$\sigma _{v}^{2}(\xi ) \simeq 0.2v_{0}^{2} + v_{T}^{2}(\xi ),\quad \xi {\text{/}}{{r}_{0}} \geqslant 2,$$

and this feature of potential (26) explains the observed weak dependence \(\sigma _{v}^{2}(\xi )\).

For 31 dwarf galaxies studied in [38], estimates of the mass and dispersion of radial velocities at a radius of half the luminosity \({{r}_{{1/2}}}\) make it possible to compare the values \(\langle \sigma _{v}^{2}({{r}_{{1/2}}})\rangle \) and velocities \(v_{{1/2}}^{2} = GM({{r}_{{1/2}}}){\text{/}}{{r}_{{1/2}}}\) at this radius. For average values, we get

$$\langle \sigma _{v}^{2}({{r}_{{1/2}}})\rangle {\text{/}}v_{{1/2}}^{2} \simeq 0.4,\quad v_{T}^{2}{\text{/}}v_{{1/2}}^{2} \simeq 0.6,$$

and for such radii, the influence of random motions of stars is comparable to the gravitational potential of DM. But near the outer boundary, the radial velo-cities and the averaging length are small, and \(v_{T}^{2}(\xi ) \ll \sigma _{v}^{2}(\xi ) \simeq v_{{{\text{vir}}}}^{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyansky, M., Doroshkevich, A., Larchenkova, T. et al. Galaxies and Clusters of Galaxies in Observations and Numerical Models. Astron. Rep. 66, 766–777 (2022). https://doi.org/10.1134/S1063772922100043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922100043

Keywords:

Navigation