Skip to main content
Log in

The Observed Polarization Direction Depending on Geometrical and Kinematic Parameters of Relativistic Jets

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The study of the polarization direction is crucial in the issue of restoring the spatial structure of the magnetic field in the active galaxy parsec-scale jets. But, due to relativistic effects, the magnetic field projected onto the celestial sphere in the source reference frame cannot be assumed to be orthogonal to the observed direction of the electric vector in the wave. Moreover, the local axis of the jet component may not coincide with its motion direction, which affects the observed polarization direction. In this article, we analyze the transverse to jet distributions of the electric vector in the wave, obtained as a result of modeling with different jet kinematic and geometrical parameters for a helical magnetic field with a different twist angle and for a toroidal magnetic field in the center, surrounded by a varying thickness sheath, penetrated by a poloidal field. We obtained: (1) the shape of the electric vector transverse distribution depends in a complex way on the angles of the jet axis and the velocity vector with the line of sight; (2) ambiguity in determining the twist direction of the helical magnetic field under using only the distributions of the electric vector in the wave; (3) both considered magnetic field topologies can reproduce both the “spine–sheath” polarization structure and individual bright features with the longitudinal to the jet axis polarization direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. https://www.cv.nrao.edu/MOJAVE/allsources.html

REFERENCES

  1. A. Tchekhovskoy and O. Bromberg, Mon. Not. R. Astron. Soc. 461, L46 (2016).

    Article  ADS  Google Scholar 

  2. R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977).

    Article  ADS  Google Scholar 

  3. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982).

    Article  ADS  Google Scholar 

  4. C. M. Raiteri, M. Villata, M. I. Carnerero, J. A. Acosta-Pulido, et al., Mon. Not. R. Astron. Soc. 489, 1837 (2019).

    Article  ADS  Google Scholar 

  5. C. M. Raiteri and M. Villata, Galaxies 9, 42 (2021).

    Article  ADS  Google Scholar 

  6. A. P. Marscher, Astrophys. J. 780, 87 (2014).

    Article  ADS  Google Scholar 

  7. M. Lyutikov and E. V. Kravchenko, Mon. Not. R. Astron. Soc. 467, 3876 (2017).

    Article  ADS  Google Scholar 

  8. M. L. Lister and D. C. Homan, Astron. J. 130, 1389 (2005).

    Article  ADS  Google Scholar 

  9. A. Pushkarev, Y. Kovalev, M. Lister, T. Savolainen, M. Aller, H. Aller, and M. Hodge, Galaxies 5, 93 (2017).

    Article  ADS  Google Scholar 

  10. A. B. Pushkarev, Monthly Not. Roy. Astron. Soc., submitted, arXiv:2209.04842.

  11. M. Butuzova and A. Pushkarev, in Proceedings of the European VLBI Network Mini-Symposium and Users’ Meeting 2021, July 12–14, 2021 (2022), id. 5. https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid99.

  12. M. S. Butuzova and A. B. Pushkarev, Monthly Not. Roy. Astron. Soc., submitted, arxiv: arXiv:2209.15359.

  13. D. M. Christodoulou, D. C. Gabuzda, S. Knuettel, I. Contopoulos, D. Kazanas, and C. P. Coughlan, Astron. Astrophys. 591, A61 (2016).

    Article  ADS  Google Scholar 

  14. S. Knuettel, D. Gabuzda, and S. O’Sullivan, Galaxies 5, 61 (2017).

    Article  ADS  Google Scholar 

  15. A. B. Pushkarev, D. C. Gabuzda, Y. N. Vetukhnovskaya, and V. E. Yakimov, Astron. Rep. 49, 5 (2005).

    Article  ADS  Google Scholar 

  16. R. A. Laing, Mon. Not. R. Astron. Soc. 193, 439 (1980).

    Article  ADS  Google Scholar 

  17. G. Ghisellini, F. Tavecchio, and M. Chiaberge, Astron. Astrophys. 432, 401 (2005).

    Article  ADS  Google Scholar 

  18. M. L. Lister, M. F. Aller, H. D. Aller, D. C. Homan, et al., Astron. J. 146, 120 (2013).

    Article  ADS  Google Scholar 

  19. M. L. Lister, D. C. Homan, K. I. Kellermann, Y. Y. Kovalev, A. B. Pushkarev, E. Ros, and T. Savolainen, Astrophys. J. 923, 30 (2021).

    Article  ADS  Google Scholar 

  20. A. B. Pushkarev, Y. Y. Kovalev, M. L. Lister, and T. Savolainen, Mon. Not. R. Astron. Soc. 468, 4992 (2017).

    Article  ADS  Google Scholar 

  21. M. S. Butuzova, Astron. Rep. 62, 116 (2018).

    Article  ADS  Google Scholar 

  22. M. S. Butuzova, Astron. Rep. 62, 654 (2018).

    Article  ADS  Google Scholar 

  23. M. S. Butuzova, Astropart. Phys. 129, 102577 (2021).

  24. M. S. Butuzova and A. B. Pushkarev, Universe 6, 191 (2020).

    Article  ADS  Google Scholar 

  25. M. S. Butuzova, Astron. Rep. 65, 635 (2021).

    Article  ADS  Google Scholar 

  26. A. B. Pushkarev, T. Hovatta, Y. Y. Kovalev, M. L. Lister, et al., Astron. Astrophys. 545, A113 (2012).

    Article  Google Scholar 

  27. T. Hovatta, M. L. Lister, M. F. Aller, H. D. Aller, D. C. Homan, Y. Y. Kovalev, A. B. Pushkarev, and T. Savolainen, Astron. J. 144, 105 (2012).

    Article  ADS  Google Scholar 

  28. M. Lyutikov, V. I. Pariev, and D. C. Gabuzda, Mon. Not. R. Astron. Soc. 360, 869 (2005).

    Article  ADS  Google Scholar 

  29. P. A. Hughes, H. D. Aller, and M. F. Aller, Astrophys. J. 341, 54 (1989).

    Article  ADS  Google Scholar 

  30. D. C. Gabuzda, A. R. Reichstein, and E. L. O’Neill, Mon. Not. R. Astron. Soc. 444, 172 (2014).

    Article  ADS  Google Scholar 

  31. D. C. Gabuzda, S. Knuettel, and B. Reardon, Mon. Not. R. Astron. Soc. 450, 2441 (2015).

    Article  ADS  Google Scholar 

  32. D. C. Gabuzda, M. Nagle, and N. Roche, Astron. Astrophys. 612, A67 (2018).

    Article  ADS  Google Scholar 

  33. D. C. Gabuzda, Galaxies 9, 58 (2021).

    Article  ADS  Google Scholar 

  34. E. Murphy, T. V. Cawthorne, and D. C. Gabuzda, Mon. Not. R. Astron. Soc. 430, 1504 (2013).

    Article  ADS  Google Scholar 

  35. C. Prior and K. N. Gourgouliatos, Astron. Astrophys. 622, A122 (2019).

    Article  ADS  Google Scholar 

  36. J. M. Hutchison, T. V. Cawthorne, and D. C. Gabuzda, Mon. Not. R. Astron. Soc. 321, 525 (2001).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant no. 21-12-00241.

Appendixes A and B, consisting only of figures, are given at the end of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Butuzova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

APPENDIX A

EV DISTRIBUTIONS FOR DIFFERENT MODEL PARAMETERS

Figure captions 517 for the article of Butuzova. Appendix A.

Fig. 5.
figure 5

Shapes of EV distributions depending on the angle of the velocity vector (\(\theta \)) and the jet component axis (\({{\theta }_{\rho }}\)) to the line of sight for \(\psi {\kern 1pt} ' = 0^\circ \). Solid, dashed, and dotted lines are associated with intervals of high, medium, and small values, respectively. The intervals of \(\theta \) are indicated at the top of each plot.

Fig. 6.
figure 6

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 10^\circ \).

Fig. 7.
figure 7

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 25^\circ \).

Fig. 8.
figure 8

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 45^\circ \).

Fig. 9.
figure 9

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 55^\circ \).

Fig. 10.
figure 10

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 65^\circ \).

Fig. 11.
figure 11

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 75^\circ \).

Fig. 12.
figure 12

The same as in Fig. 5, for \(\psi {\kern 1pt} ' = 90^\circ \).

Fig. 13.
figure 13

The shapes of the EV distributions depend on the angle of the velocity vector (\(\theta \)) and jet component axis (\({{\theta }_{\rho }}\)) to the line of sight for \({{R}_{t}} = 0.25\). Solid, dashed, and dotted lines are associated with intervals of high, medium and small values of \(\theta \), respectively. The intervals of \(\theta \) are indicated at the top of each plot.

Fig. 14.
figure 14

The same as in Fig. 13, for \({{R}_{t}} = 0.33\).

Fig. 15.
figure 15

The same as in Fig. 13, for \({{R}_{t}} = 0.5\).

Fig. 16.
figure 16

The same as in Fig. 13, for \({{R}_{t}} = 0.7\).

Fig. 17.
figure 17

The same as in Fig. 13, for \({{R}_{t}} = 0.9\).

APPENDIX B

COMBINATIONS OF EV DISTRIBUTION SHAPES IN AN INDIVIDUAL JET

Figure captions 1830 for the article of Butuzova. Appendix B.

Fig. 18.
figure 18

Combination of EV distribution shapes in each model jet for \(\psi {\kern 1pt} ' = 0^\circ \). Those that additionally contain type 7 are marked in black.

Fig. 19.
figure 19

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 10^\circ \).

Fig. 20.
figure 20

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 25^\circ \).

Fig. 21.
figure 21

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 45^\circ \).

Fig. 22.
figure 22

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 55^\circ \).

Fig. 23.
figure 23

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 65^\circ \).

Fig. 24.
figure 24

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 75^\circ \).

Fig. 25.
figure 25

The same as in Fig. 18, for \(\psi {\kern 1pt} ' = 90^\circ \).

Fig. 26.
figure 26

Combination of EV distribution shapes in each model jet for \({{R}_{t}} = 0.25\). Those that additionally contain type 7 are marked in black.

Fig. 27.
figure 27

The same as in Fig. 26, for \({{R}_{t}} = 0.33\).

Fig. 28.
figure 28

The same as in Fig. 26, for \({{R}_{t}} = 0.5\).

Fig. 29.
figure 29

The same as in Fig. 26, for \({{R}_{t}} = 0.7\).

Fig. 30.
figure 30

The same as in Fig. 26, for \({{R}_{t}} = 0.9\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butuzova, M.S. The Observed Polarization Direction Depending on Geometrical and Kinematic Parameters of Relativistic Jets. Astron. Rep. 66, 845–871 (2022). https://doi.org/10.1134/S1063772922100031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922100031

Keywords:

Navigation