Skip to main content
Log in

Galaxies with Abnormally High Gas Content in the Disk

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The content of gas in galaxies with an anomalously high relative mass of hydrogen\({{M}_{{{\text{HI}}}}}{\text{/}}{{M}_{*}}\) for a given mass of the stellar population \({{M}_{*}}\) (VHR-galaxies) is considered, using the available samples of such galaxies. It is shown that, within the optical diameter \({{D}_{{25}}}\), the mass of HI in VHR galaxies, as well as in galaxies with “normal” HI content, is limited by a value that depends on the specific angular momentum of the disk. Outer gaseous disks beyond \({{D}_{{25}}}\), which contain the main amount of HI in most of the galaxies we consider, are gravitationally stable, and, as a rule, they retain an approximately constant value of the stability parameter \({{Q}_{{{\text{gas}}}}}\) over a large range of radial distances. It allows to propose that the outer disks of VHR galaxies are not recently acquired, but are of great age, and their gravitational instability was the main regulator of star formation during their formation. In this case, the extended disks of galaxies should also include a low-brightness stellar components of old stars extending far beyond their optical diameter \({{D}_{{25}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. For a collisionless (stellar) disk, instead of the number \(\pi \), there should be 3.36, but this difference is insignificant.

  2. The extended outer disks are observed not only in galaxies with an anomalously high integral mass of HI, but also in some “normal” high-luminosity galaxies with a moderate gas content (see, e.g., review [34]). Therefore, the question of the formation of external disks is of a more general nature.

REFERENCES

  1. K. Leroy, F. Walter, E. Brinks, F. Bigiel, W. J. G. de Blok, B. Madore, and M. D. Thornley, Astron. J. 136, 2782 (2008); arXiv: 0810.2556 [astro-ph].

    Article  ADS  Google Scholar 

  2. A. Burkert, Mem. Soc. Astron. Ital. 88, 533 (2017); arXiv: 1709.02112 [astro-ph.GA].

    ADS  Google Scholar 

  3. A. V. Zasov and N. A. Zaitseva, Astron. Lett. 43, 439 (2017); arXiv: 1705.07659 [astro-ph.GA].

    Article  ADS  Google Scholar 

  4. F. Bigiel and L. Blitz, Astrophys. J. 756, 183 (2012); arXiv: 1208.1505 [astro-ph.CO].

    Article  ADS  Google Scholar 

  5. J. Wang, B. Catinella, A. Saintonge, Z. Pan, P. Serra, and L. Shao, Astrophys. J. 890, 63 (2020); arXiv: 2001.01970 [astro-ph.GA].

    Article  ADS  Google Scholar 

  6. Catinella, D. Schiminovich, G. Kauffmann, S. Fabello, et al., Mon. Not. R. Astron. Soc. 403, 683 (2010); arXiv: 0912.1610 [astro-ph.CO].

  7. S. Huang, M. P. Haynes, R. Giovanelli, G. Hallenbeck, et al., Astrophys. J. 793, 40 (2014); arXiv: 1407.7538 [astro-ph.GA].

    Article  ADS  Google Scholar 

  8. J. Wang, G. Kauffmann, G. I. G. Józsa, P. Serra, et al., Mon. Not. R. Astron. Soc. 433, 270 (2013); arXiv: 1303.3538 [astro-ph.CO].

    Article  ADS  Google Scholar 

  9. K. A. Lutz, V. A. Kilborn, B. Catinella, B. S. Koribalski, et al., Mon. Not. R. Astron. Soc. 467, 1083 (2017); arXiv: 1701.02447 [astro-ph.GA].

    ADS  Google Scholar 

  10. K. A. Lutz, V. A. Kilborn, B. S. Koribalski, B. Catinella, et al., Mon. Not. R. Astron. Soc. 476, 3744 (2018); arXiv: 1802.04043 [astro-ph.GA].

    Article  ADS  Google Scholar 

  11. K. A. Lutz, V. Kilborn, B. Catinella, L. Cortese, T. H. Brown, and B. Koribalski, Astron. Astrophys. 635, A69 (2020), arXiv: 2001.07516 [astro-ph.GA].

    Article  ADS  Google Scholar 

  12. J. J. Lemonias, D. Schiminovich, B. Catinella, T. M. Heckman, and S. M. Moran, Astrophys. J. 790, 27 (2014); arXiv: 1407.0706 [astro-ph.GA].

    Article  ADS  Google Scholar 

  13. K. Geréb, S. Janowiecki, B. Catinella, L. Cortese, and V. Kilborn, Mon. Not. R. Astron. Soc. 476, 896 (2018); arXiv: 1801.06880 [astro-ph.GA].

    ADS  Google Scholar 

  14. T. H. Randriamampandry, J. Wang, and K. M. Mogotsi, arXiv: 2105.10683 [astro-ph.GA] (2021).

  15. G. Hallenbeck, S. Huang, K. Spekkens, M. P. Haynes, et al., Astron. J. 152, 225 (2016); arXiv: 1610.03859 [astro-ph.GA].

    Article  ADS  Google Scholar 

  16. C. Lee, A. Chung, M. S. Yun, R. Cybulski, G. Narayanan, and N. Erickson, Mon. Not. R. Astron. Soc. 441, 1363 (2014); arXiv: 1404.4371 [astro-ph.GA].

    ADS  Google Scholar 

  17. D. V. Stark, K. A. Bundy, M. E. Orr, P. F. Hopkins, et al., Mon. Not. R. Astron. Soc. 474, 2323 (2018); arXiv: 1711.00178 [astro-ph.GA]

    Article  ADS  Google Scholar 

  18. A. B. Romeo, Mon. Not. R. Astron. Soc. 491, 4843 (2020); arXiv: 1905.05752 [astro-ph.GA].

    Article  ADS  Google Scholar 

  19. D. Obreschkow, K. Glazebrook, V. Kilborn, and K. Lutz, Astrophys. J. Lett. 824, L26 (2016); arXiv: 1605.04927 [astro-ph.GA].

    ADS  Google Scholar 

  20. V. S. Safronov, Ann. d’Astrophys. 23, 979 (1960).

    ADS  Google Scholar 

  21. A. Toomre, Astrophys. J. 139, 1217 (1964).

    Article  ADS  Google Scholar 

  22. P. Goldreich and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130, 97 (1965).

    Article  ADS  Google Scholar 

  23. A. A. Marchuk and N. Y. Sotnikova, Mon. Not. R. Astron. Soc. 475, 4891 (2018); arXiv: 1804.07962 [astro-ph.GA].

    Article  ADS  Google Scholar 

  24. G. Hallenbeck, S. Huang, K. Spekkens, M. P. Haynes, et al., Astron. J. 148, 69 (2014); arXiv: 1407.1744 [astro-ph.GA].

  25. R. Ianjamasimanana, W. J. G. de Blok, F. Walter, G. H. Heald, A. Caldú-Primo, and T. H. Jarrett, Astron. J. 150, 47 (2015), arXiv: 1506.04156 [astro-ph.GA].

    Article  ADS  Google Scholar 

  26. D. Tamburro, H. W. Rix, A. K. Leroy, M. M. MacLow, F. Walter, R. C. Kennicutt, E. Brinks, and W. J. G. de Blok, Astron. J. 137, 4424 (2009); arXiv: 0903.0183 [astro-ph.GA].

    Article  ADS  Google Scholar 

  27. I. D. Karachentsev, V. E. Karachentseva, W. K. Huchtmeier, and D. I. Makarov, Astron. J. 127, 2031 (2004).

    Article  ADS  Google Scholar 

  28. J. P. Huchra, L. M. Macri, K. L. Masters, T. H. Jarrett, et al., Astrophys. J. Suppl. 199, 26 (2012); arXiv: 1108.0669 [astro-ph.CO].

    Article  Google Scholar 

  29. U. Lisenfeld, L. Verdes-Montenegro, J. Sulentic, S. Leon, et al., Astron. Astrophys. 462, 507 (2007); arXiv: astro-ph/0610784.

    Article  ADS  Google Scholar 

  30. J. Schombert, S. McGaugh, and F. Lelli, Mon. Not. R. Astron. Soc. 483, 1496 (2019); arXiv: 1811.10579 [astro-ph.GA].

    ADS  Google Scholar 

  31. T. P. K. Martinsson, M. A. W. Verheijen, M. A. Bershady, K. B. Westfall, D. R. Andersen, and R. A. Swaters, Astron. Astrophys. 585, A99 (2016); arXiv: 1510.07666 [astro-ph.GA].

    Article  ADS  Google Scholar 

  32. D. Makarov, P. Prugniel, N. Terekhova, H. Courtois, and I. Vauglin, Astron. Astrophys. 570, A13 (2014).

    Article  ADS  Google Scholar 

  33. J. Heidmann, N. Heidmann, and G. de Vaucouleurs, Mem. R. Astron. Soc. 75, 85 (1972).

    ADS  Google Scholar 

  34. B. G. Elmegreen and D. A. Hunter, Astrophys. Space Sci. Libr. 434, 115 (2017).

    Article  ADS  Google Scholar 

  35. T. E. Pickering, C. D. Impey, J. H. van Gorkom, and G. D. Bothun, Astron. J. 114, 1858 (1997).

    Article  ADS  Google Scholar 

  36. A. S. Saburova, I. V. Chilingarian, A. V. Kasparova, I. Y. Katkov, D. G. Fabricant, and R. I. Uklein, Mon. Not. R. Astron. Soc. 489, 4669 (2019); arXiv: 1908.11383 [astro-ph.GA].

    Article  ADS  Google Scholar 

  37. J. Wang, P. Serra, G. I. G. Józsa, B. Koribalski, et al., Mon. Not. R. Astron. Soc. 453, 2399 (2015); arXiv: 1507.08950 [astro-ph.GA].

    ADS  Google Scholar 

  38. M. Courtois, D. Zaritsky, J. G. Sorce, and D. Pomarne, Mon. Not. R. Astron. Soc. 448, 1767 (2015); arXiv: 1502.00292 [astro-ph.GA].

    Article  ADS  Google Scholar 

  39. G. R. Meurer, Z. Zheng, and W. J. G. de Blok, Mon Not. R. Astron. Soc. 429, 2537 (2013); arXiv: 1212.1460 [astro-ph.GA].

    Article  ADS  Google Scholar 

  40. F. van Donkelaar, O. Agertz, and F. Renaud, arXiv: 2110.13165 [astro-ph.GA] (2021).

  41. T. Into and L. Portinari, Mon. Not. R. Astron. Soc. 430, 2715 (2013); arXiv: 1301.2178 [astro-ph.CO].

    Article  ADS  Google Scholar 

  42. M. Das, S. S. McGaugh, R. Ianjamasimanana, J. Schombert, and K. S. Dwarakanath, Astrophys. J. 889, 10 (2020); arXiv: 1912.05352 [astro-ph.GA].

    ADS  Google Scholar 

  43. P. Garg and A. Banerjee, Mon. Not. R. Astron. Soc. 472, 166 (2017), arXiv: 1707.08085 [astro-ph.GA].

    Article  ADS  Google Scholar 

  44. A. S. Saburova, I. V. Chilingarian, A. V. Kasparova, O. K. Sil’chenko, K. A. Grishin, I. Y. Katkov, and R. I. Uklein, Mon. Not. R. Astron. Soc. 503, 830 (2021); arXiv: 2011.01238 [astro-ph.GA].

    Article  ADS  Google Scholar 

  45. D. Bisaria, K. Spekkens, S. Huang, G. Hallenbeck, and M. P. Haynes, Mon. Not. R. Astron. Soc. 509, 100 (2022); arXiv: 2111.01806 [astro-ph.GA].

    ADS  Google Scholar 

Download references

Funding

This work was supported by RFBR grant 20-02-00080A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zasov.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasov, A.V., Zaitseva, N.A. Galaxies with Abnormally High Gas Content in the Disk. Astron. Rep. 66, 755–765 (2022). https://doi.org/10.1134/S1063772922090128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922090128

Keywords:

Navigation