Skip to main content
Log in

Resonant Curve Due to Perturbations in Geo-Synchronous Satellite Including the Earth’s Equatorial Ellipticity and Resistive Force

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In this paper, we investigated the resonant curves in the motion of the geo-synchronous satellite under the gravitational effect of the Sun, the Moon and the Earth. We have taken into consideration the effect of Earth’s equatorial ellipticity and resistive force on the resonant curve. By defining the perturbations in \(r\) (radial distance of the satellite from the center of the Earth) and \({{\dot {\theta }}_{E}}\) (spin rate of Earth), we reduced equations of motion of satellite to a second order linear non-homogeneous differential equation in \(\Delta r\) (radial deviation). With the help of different graphs, we have analyzed the effect of \(\dot {\gamma }\) (rate of change of Earth’s equatorial ellipticity parameter) and \(\dot {\alpha }\) (angular velocity of the bary-center system around the Sun) on the oscillatory amplitudes. We observed that the oscillatory amplitudes decrease when the value of \(\gamma \) (Earth’s equatorial ellipticity parameter) and \(\alpha \) (orbital angle of the bary-center system around the Sun) increase. Finally, we have studied the phase portrait, phase space and bifurcation theory using the method of Poincaré section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. H. Frick and T. B. Garber, Report R-399-NASA (NASA, 1962).

  2. K. R. Meyer, J. Differ. Equat. 39, 2 (1981).

    Article  ADS  Google Scholar 

  3. S. Shaw and P. Holmes, J. Sound Vibrat. (1983); id hal-01509017. https://doi.org/10.1016/0022-460X(83)90407-8

  4. R. Malhotra, LPI Contrib., No. 831, 1 (1994).

  5. M. ’Alvarez-Ramrez and C. Vidal, Math. Probl. Eng. 2009, D 181360 (2009).

  6. B. Quarles, Z. E. Musielak, and M. Cuntz, Astron. Nachr. 333, 551 (2012).

    Article  ADS  Google Scholar 

  7. K. Tsumoto, T. Ueta, T. Yoshinaga, and H. Kawakami, Nonlin. Theory Appl. 3, 458 (2012).

    Google Scholar 

  8. S. Yadav, R. Aggarwal, and B. Kaur, Int. J. Adv. Astron. 4, 68 (2016).

    Article  Google Scholar 

  9. V. Kumar, B. R. Gupta, and R. Aggarwal, Appl. Appl. Math.: Int. J. 12, 31 (2017).

    Google Scholar 

  10. M. Mendler, J. Falk, and B. Drossel, PLoS One 13, e0196126 (2018). https://doi.org/10.1371/journal.pone.0196126

  11. Li-Bo Liu, Y. J. Qian, and X. D. Yang, Adv. Astron. 2019, 6324901 (2019).

  12. M. A. Rodríguez-Licea, F. J. Perez-Pinal, and J. C. N. Perez, Appl. Sci. 9, 872 (2019).

    Article  Google Scholar 

  13. S. Yadav, M. Kumar, and V. Kumar, New Astron. 86, 101573 (2021).

Download references

ACKNOWLEDGMENTS

We are thankful to the Center for Fundamental Research in Space Dynamics and Celestial Mechanics (CFRSC) for providing all facilities for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

APPENDIX A

Values of \({{L}_{i}}\)’s used in Eq. (1)

$${{L}_{1}} = \frac{r}{2}\cos \phi (1 - \cos \lambda ) - \frac{{{{r}_{{20}}}}}{{4{\kern 1pt} \mu }}\sin (2\phi )\sin (2\lambda )\sin \nu ,$$
$${{L}_{2}} = \frac{r}{2}\cos \phi (1 + \cos \lambda ) + \frac{{{{r}_{{20}}}}}{{4\mu }}\sin (2\phi )\sin (2\lambda )\sin \nu ,$$
$${{L}_{3}} = \frac{{ - {{r}_{{20}}}}}{\mu }\cos \nu \left( {1 + \frac{{{{{\cos }}^{2}}\phi }}{2}} \right),$$
$${{L}_{4}} = \frac{{ - R}}{4}{{\cos }^{2}}\phi (1 + \cos \lambda ),$$
$${{L}_{5}} = \frac{{ - R}}{4}{{\cos }^{2}}\phi (1 - \cos \lambda ),$$
$${{L}_{6}} = \frac{{ - {{r}_{{20}}}}}{{4\mu }}{{\cos }^{2}}\phi \cos \nu (1 - \sin \lambda ),$$
$${{L}_{7}} = \frac{{ - {{r}_{{20}}}}}{{4\mu }}{{\cos }^{2}}\phi \cos \nu (1 + \sin \lambda ),$$
$${{L}_{8}} = \frac{{ - R}}{4}{{\cos }^{2}}\phi ,$$
$${{L}_{9}} = \frac{{ - R}}{4}{{\cos }^{2}}\phi - \frac{R}{2}{{\sin }^{2}}\lambda {{\sin }^{2}}\phi ,$$
$${{L}_{{10}}} = \frac{R}{8}{{\cos }^{2}}\phi {{\cos }^{2}}\lambda ,$$
$${{L}_{{11}}} = \frac{R}{8}{{\cos }^{2}}\phi {{\cos }^{2}}\lambda ,$$
$${{L}_{{12}}} = \frac{{ - R}}{4}{{\cos }^{2}}\phi {{\cos }^{2}}\lambda ,$$
$${{L}_{{13}}} = \frac{{ - R}}{4}{{\cos }^{2}}\phi {{\cos }^{2}}\lambda ,$$
$$\begin{gathered} {{L}_{{14}}} = - r\sin \lambda \sin \phi - \frac{{{{r}_{{20}}}\sin \nu }}{\mu } \\ \times \;\left( {1 + {{{\sin }}^{2}}\lambda {{{\sin }}^{2}}\phi + \frac{{{{{\cos }}^{2}}\phi {{{\cos }}^{2}}\lambda }}{2}} \right), \\ \end{gathered} $$
$${{L}_{{15}}} = \frac{{ - R}}{4}\sin 2\phi \sin \lambda (1 - \cos \lambda ),$$
$${{L}_{{16}}} = \frac{{ - R}}{4}\sin 2\phi \sin \lambda (1 + \cos \lambda ),$$
$${{L}_{{17}}} = \frac{{ - {{r}_{{20}}}}}{{4{\kern 1pt} \mu }}{{\cos }^{2}}\phi \cos \lambda \sin \nu (1 + \cos \lambda ),$$
$${{L}_{{18}}} = \frac{{{{r}_{{20}}}}}{{4\mu }}{{\cos }^{2}}\phi \cos \lambda \sin \nu (1 + \cos \lambda ),$$
$${{L}_{{19}}} = \frac{{{{r}_{{20}}}}}{{4\mu }}{\kern 1pt} \sin 2\phi \sin \lambda (\sin \nu + \cos \nu ),$$
$${{L}_{{20}}} = \frac{{ - {{r}_{{20}}}}}{{4{\kern 1pt} \mu }}\sin 2\phi \sin \lambda (\sin \nu + \cos \nu ),$$
$${{L}_{{21}}} = \frac{{ - R}}{4}\sin 2\phi \sin 2\lambda ,$$
$${{L}_{{22}}} = {{\sin }^{2}}\lambda \left( {{{{\sin }}^{2}}\phi - \frac{{{{{\cos }}^{2}}\phi }}{2}} \right).$$

APPENDIX B

Values of \({{M}_{i}}\)’s used in Eq. (2)

$${{M}_{1}} = \frac{{ - {{r}_{{20}}}}}{{2\mu }}\cos \phi \cos \lambda \sin \nu ,$$
$${{M}_{2}} = \frac{{ - {{r}_{{20}}}}}{{4\mu }}\cos \phi \cos \lambda \sin \nu ,$$
$${{M}_{3}} = \frac{{ - {{r}_{{20}}}}}{{4\mu }}\cos \phi \cos \lambda \sin \nu ,$$
$${{M}_{4}} = \frac{R}{4}\sin \phi \left( {\frac{{\sin 2\lambda }}{2} - \sin \lambda } \right),$$
$${{M}_{5}} = \frac{R}{4}\sin \phi \left( {\frac{{\sin 2\lambda }}{2} + \sin \lambda } \right),$$
$${{M}_{6}} = \frac{{ - R}}{4}\sin \phi \sin 2\lambda ,$$
$${{M}_{7}} = \frac{R}{4}\cos \phi ({{\cos }^{2}}\lambda - 1),$$
$${{M}_{8}} = \frac{R}{8}\cos \phi \cos \lambda (1 - \cos \lambda ),$$
$${{M}_{9}} = \frac{{ - R}}{4}\cos \phi \left( {1 + \frac{{{{{\cos }}^{2}}\lambda }}{2} + \cos \lambda } \right),$$
$${{M}_{{10}}} = \frac{R}{4}\cos \phi (1 - \cos \lambda ),$$
$${{M}_{{11}}} = \frac{{ - {{r}_{{20}}}}}{{4{\kern 1pt} \mu }}{{\cos }^{2}}\lambda \cos \phi \sin \nu ,$$
$${{M}_{{12}}} = \frac{{{{r}_{{20}}}}}{{2{\kern 1pt} \mu }}{\kern 1pt} \left( {\cos \nu - \frac{{{{{\cos }}^{2}}\lambda \sin \nu }}{2}} \right),$$
$${{M}_{{13}}} = \frac{{{{r}_{{20}}}}}{{2{\kern 1pt} \mu }}\cos \phi \cos \nu ,$$
$${{M}_{{14}}} = \frac{{{{r}_{{20}}}}}{{2{\kern 1pt} \mu }}{\kern 1pt} \left( {\sin \lambda \sin \phi \cos \nu + \frac{{\sin 2\lambda \sin \nu }}{2}} \right),$$
$${{M}_{{15}}} = \frac{{{{r}_{{20}}}}}{{2\mu }}\left( {\sin \lambda \sin \phi \cos \nu - \frac{{\sin 2\lambda \sin \nu }}{2}} \right).$$

APPENDIX C

Values of \({{P}_{i}}\)’s used in Eq. (6)

$${{P}_{1}} = - \frac{{12J_{2}^{{(2)}}{{g}_{0}}R_{0}^{4}{{{\cos }}^{2}}\phi }}{{r_{c}^{3}}}\frac{B}{{{{B}^{2}} + 4{{{\dot {\gamma }}}^{2}}}},$$
$${{P}_{2}} = \frac{{12J_{2}^{{(2)}}{{g}_{0}}R_{0}^{4}{{{\cos }}^{2}}{{\phi }_{m}}}}{{r_{{em}}^{4}}}\left( {\frac{{2{{{\dot {\theta }}}_{E}}\dot {\gamma }}}{{{{B}^{2}} + 4{{{\dot {\gamma }}}^{2}}}} - \frac{3}{4}} \right),$$
$$\begin{gathered} {{P}_{3}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{1}}}}{{R({{B}^{2}} + {{{\dot {\alpha }}}^{2}})}} \\ - \;\frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{3}}\cos \phi {{M}_{{13}}}}}{{R({{B}^{2}} + {{{\dot {\alpha }}}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}{{L}_{3}}}}{R}, \\ \end{gathered} $$
$$\begin{gathered} {{P}_{4}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{2}}}}{{R({{B}^{2}} + {{{(2{{{\dot {\theta }}}_{E}} + \dot {\alpha })}}^{2}})}} \\ - \;\frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi (2{{{\dot {\theta }}}_{E}} + \dot {\alpha }){\kern 1pt} {{M}_{{11}}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{(2{{{\dot {\theta }}}_{E}} + \dot {\alpha })}}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{6}}}}{R}, \\ \end{gathered} $$
$$\begin{gathered} {{P}_{5}} = \frac{{6{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{3}}}}{{R({{B}^{2}} + {{{(2{{{\dot {\theta }}}_{E}} - \dot {\alpha })}}^{2}})}} \\ - \;\frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi (2{{{\dot {\theta }}}_{E}} - \dot {\alpha }){{M}_{{12}}}}}{{R({{B}^{2}} + {{{(2{{{\dot {\theta }}}_{E}} - \dot {\alpha })}}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{7}}}}{R}, \\ \end{gathered} $$
$${{P}_{6}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{4}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} + 2\dot {\alpha })}}^{2}})}},$$
$${{P}_{7}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{5}}}}{{R({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} - 2\dot {\alpha })}}^{2}})}},$$
$${{P}_{8}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{6}}}}{{R{\kern 1pt} ({{B}^{2}} + \dot {\theta }_{E}^{2})}},$$
$${{P}_{9}} = \frac{{ - 12{\kern 1pt} {{r}_{c}}\dot {\theta }_{E}^{2}{{{\dot {\alpha }}}^{2}}\cos \phi {{M}_{7}}}}{{R{\kern 1pt} ({{B}^{2}} + 4\dot {\theta }_{E}^{2})}} + \frac{{3{\kern 1pt} {{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{8}}}}{R},$$
$${{P}_{{10}}} = \frac{{ - 12{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} ({{{\dot {\theta }}}_{E}} + \dot {\alpha }){{M}_{8}}}}{{R{\kern 1pt} ({{B}^{2}} + 4({{{\dot {\theta }}}_{E}} + \dot {\alpha }{{)}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{4}}}}{R},$$
$${{P}_{{11}}} = \frac{{ - 12{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} ({{{\dot {\theta }}}_{E}} - \dot {\alpha }){{M}_{9}}}}{{R{\kern 1pt} ({{B}^{2}} + 4({{{\dot {\theta }}}_{E}} - \dot {\alpha }{{)}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{5}}}}{R},$$
$${{P}_{{12}}} = \frac{{ - 12{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{3}}\cos \phi {{M}_{{10}}}}}{{R{\kern 1pt} ({{B}^{2}} + 4{{{\dot {\alpha }}}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{9}}}}{R},$$
$${{P}_{{13}}} = \frac{{ - 6{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} ({{{\dot {\theta }}}_{E}} + \dot {\alpha }){{M}_{{14}}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} + \dot {\alpha })}}^{2}})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{1}}}}{R},$$
$${{P}_{{14}}} = \frac{{ - 6{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} ({{{\dot {\theta }}}_{E}} - \dot {\alpha }){{M}_{{15}}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} - \dot {\alpha })}}^{2}})}} + \frac{{3{{r}_{c}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}{{L}_{2}}}}{R},$$
$${{P}_{{15}}} = \frac{{3{\kern 1pt} {{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{10}}}}}{R},$$
$${{P}_{{16}}} = \frac{{3{\kern 1pt} {{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{11}}}}}{R},$$
$${{P}_{{17}}} = \frac{{3{\kern 1pt} {{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{12}}}}}{R},$$
$${{P}_{{18}}} = \frac{{3{\kern 1pt} {{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{13}}}}}{R},$$
$$\begin{gathered} {{P}_{{19}}} = \frac{{6{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi }}{{R({{B}^{2}} + {{{\dot {\alpha }}}^{2}})}}(\dot {\alpha }{\kern 1pt} {{M}_{1}} + B{\kern 1pt} {{M}_{{13}}}) \\ + \;\frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{14}}}}}{R}, \\ \end{gathered} $$
$$\begin{gathered} {{P}_{{20}}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} }}{{R{\kern 1pt} ({{B}^{2}} + {{{(2{{{\dot {\theta }}}_{E}} + \dot {\alpha })}}^{2}})}}((2{{{\dot {\theta }}}_{E}} + \dot {\alpha }){\kern 1pt} {{M}_{2}} + B{{M}_{{11}}}) \\ + \;\frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{17}}}}}{R}, \\ \end{gathered} $$
$$\begin{gathered} {{P}_{{21}}} = \frac{{6{{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi }}{{R{\kern 1pt} ({{B}^{2}} + {{{(2{{{\dot {\theta }}}_{E}} - \dot {\alpha })}}^{2}})}}((2{{{\dot {\theta }}}_{E}} - \dot {\alpha }){\kern 1pt} {{M}_{3}} + B{{M}_{{12}}}) \\ + \;\frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{18}}}}}{R}, \\ \end{gathered} $$
$${{P}_{{22}}} = \frac{{6{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} ({{{\dot {\theta }}}_{E}} + 2\dot {\alpha }){{M}_{4}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} + 2\dot {\alpha })}}^{2}})}} + \frac{{3{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}{{L}_{{15}}}}}{R},$$
$${{P}_{{23}}} = \frac{{6{\kern 1pt} {{r}_{c}}{{{\dot {\theta }}}_{E}}{{{\dot {\alpha }}}^{2}}\cos \phi {\kern 1pt} ({{{\dot {\theta }}}_{E}} + 2\dot {\alpha }){{M}_{5}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} - 2\dot {\alpha })}}^{2}})}} + \frac{{3{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}{{L}_{{16}}}}}{R},$$
$${{P}_{{24}}} = \frac{{6{\kern 1pt} {{r}_{c}}\dot {\theta }_{E}^{2}{{{\dot {\alpha }}}^{2}}\cos \phi {{M}_{6}}}}{{R{\kern 1pt} ({{B}^{2}} + \dot {\theta }_{E}^{2})}} + \frac{{3{{r}_{c}}{{{\dot {\alpha }}}^{2}}{{L}_{{21}}}}}{R},$$
$${{P}_{{25}}} = \frac{{6{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\theta }}}_{E}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{7}}}}{{R{\kern 1pt} ({{B}^{2}} + 4\dot {\theta }_{E}^{2})}},$$
$${{P}_{{26}}} = \frac{{6{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\theta }}}_{E}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{8}}}}{{R{\kern 1pt} ({{B}^{2}} + 4({{{\dot {\theta }}}_{E}} + \dot {\alpha }{{)}^{2}})}},$$
$${{P}_{{27}}} = \frac{{6{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\theta }}}_{E}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{9}}}}{{R{\kern 1pt} ({{B}^{2}} + 4({{{\dot {\theta }}}_{E}} - \dot {\alpha }{{)}^{2}})}},$$
$${{P}_{{28}}} = \frac{{6{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\theta }}}_{E}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{{10}}}}}{{R{\kern 1pt} ({{B}^{2}} + 4{{{\dot {\alpha }}}^{2}})}},$$
$${{P}_{{29}}} = \frac{{6{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\theta }}}_{E}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{{14}}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} + \dot {\alpha })}}^{2}})}} + \frac{{3{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}{{L}_{{19}}}}}{R},$$
$${{P}_{{30}}} = \frac{{6{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\theta }}}_{E}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}\cos \phi B{{M}_{{15}}}}}{{R{\kern 1pt} ({{B}^{2}} + {{{({{{\dot {\theta }}}_{E}} - \dot {\alpha })}}^{2}})}} + \frac{{3{\kern 1pt} {{r}_{c}}{\kern 1pt} {{{\dot {\alpha }}}^{2}}{{L}_{{20}}}}}{R}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Kumar, M. & Kaur, B. Resonant Curve Due to Perturbations in Geo-Synchronous Satellite Including the Earth’s Equatorial Ellipticity and Resistive Force. Astron. Rep. 66, 736–753 (2022). https://doi.org/10.1134/S1063772922090116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922090116

Keywords:

Navigation